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Motivation: Poisson Equation

m As a typical example of an elliptic partial differential equation we consider
the Poisson equation with Dirichlet boundary conditions.

m This equation is often called the model problem since its structure is simple
but the numerical solution is very similar to many other more complicated
partial differential equations,

m The two-dimensional Poisson equation has the form

—Au(x,y) =f(x,y) forall(x,y)eQ

with domain Q € R2,

m The function u : R? — R is the unknown solution function and the function
f: R? — R is the right-hand side, which is continuous in Q and its boundary.

m The operator A is the two-dimensional Laplace operator

82 o2
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Motivation: Poisson Equation

m Using this notation, the Poisson equation can also be written as

’ ’ =f for all
6 o Q
T u(x,y) — 2y2 u(x, y) = f(x,y) rail(x,y) €

m A model problem uses the unit square @ = (0, 1) x (0, 1)and assumes a
Dirichlet boundary condition

u(x, y) = o(x, y)forall (x,y) € 0Q

where ¢ is a given function and 92 is the boundary of domain 2, which is
M ={xy)0<x<Ty=0o0ry=11u{(x,y)0<y<T,x=0o0rx=1}
The boundary condition uniquely determines the solution u of the model

problem.

m An example of the Poisson equation from electrostatics is the equation

Au=-2
€0

where p is the charge density, g is a constant, and u is the electrical
potential created by the charge.
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Poisson Equation: Discretization

m For the numerical solution of equation —Au(x, y) = f(x, y), the method of
finite differences can be used, which is based on a discretization of the
domain Q U 9Q

m The discretization is given by a regular mesh with N + 2 mesh points in
x-direction and in y-direction, where N points are in the inner part and 2
points are on the boundary. The distance between points in the x- or
y-directionis h = 1/(N + 1). The mesh points are

() = (ihjh)  forij=0,1,...,N+1.

m The points on the boundary are the points with xo =0, yg = 0, xy.1 = 1, 0r
YN =1
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Poisson Equation: Discretization

Poisson equation mesh for the unit square
y _ 1,1 y
0.1 u=g @D
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0,0) (1,0) X X

X boundary values
O inner mesh points

Left: Poisson equation with Dirichlet boundary condition on the unit square £2 = (0, 1) x
(0, 1). Right: The numerical solution discretizes the Poisson equation on a mesh with equidistant
mesh points with distance 1/(N + 1). The mesh has N2 inner mesh points and additional mesh
points on the boundary

® The unknown solution function u is determined at the points (x;, y;) of this
mesh, which means that values uj := u(x;, y;) fori,j =0,1,..., N+ 1 are fo
be found.

http://adrianofesta.altervista.org/



. =
” dlslm DISIM - Universita dell’ Aquila

Poisson Equation: FD Discretization

m For the inner part of the mesh, these values are determined by solving a
linear equation system with N2 equations.

m For each mesh point (x;, ;). i,j = 1,..., N, a Taylor expansion is used for the x
or y-direction.

m The Taylor expansion in x-direction is

h? h3
U(X[ + h7 Y/) = U(Xh Y/) +h- Ux(X,', YJ) + ?uXX(Xiv y/) + ZUXXX(XI’ yj) + O(h4)7
h? h® 2
u(xi — h,y;) = u(x, ;) — h-ux(x, y;) + juxx(xiv y) — ZUXXX(Xiv ;) + O(h").

where uy denotes the partial derivative in x -direction (i.e., ux = du/ox )
and uyx denotes the second partial derivative in x-direction (.e.,
Uxe = 2U/OX?),
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Poisson Equation: FD Discretization

m Adding these two Taylor expansions results in

u(xX; + h,y)) + u(xi — h, ) = 2u(x;, y)) + PPux(x;, v) + O(h?).

m Analogously, the Taylor expansion for the y-direction can be used to get
u(x, vj + h) + u(x, y; — h) = 2u(x;, ;) + h2uyy (x;, vj) + O(h*).

m From the last two equations, an approximation for the Laplace operator
AU = Uxx + Uyy at the mesh points can be derived

1
AU, ¥j) = = 15 (AU = Uiy = Uim1y = Uil = Upj1),

where the higher order terms O(h*) are neglected.
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Poisson Equation: Discretization

Five-point stencil
resulting from the
discretization of the Laplace
operator with a finite
difference scheme. The
computation at one mesh
point uses values at the four
neighbor mesh points

(@ij+1)
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YN+t
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m This pattern is known as five-point stencil. Using the approximation of Au
and the notation f; := f(x;, y;) for the values of the right-hand side, the
discretized Poisson equation or five-point formula results:

1 .
ﬁ(‘luij —Uip1j = Uiy = Uijpr — Uij) =T for 1<ij<N.

m For the points on the boundary, the values of uj result from the boundary
condition and are given by

uj = o(x,y;) for(i,)) € 9Q.
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Poisson Equation: linear system

m The five-point formula including boundary values represents a linear
equation system with N2 equations, N? unknown values, and a coefficient
matrix A € RN xN?,

m In order to write the equation system with boundary values in matrix form
Az = d, the N2 unknowns uj, I,j=1,...,N, are arranged in row-oriented

order in a one-dimensional vector z of size n = N? which has the form
Z = (U7, Upys ey UNT; U12,y Uy ooy UND, -oveny Uiy U, -5 UNN)-
The mapping of values uj fo vector elements z is

Zo:=uy withk=i+(@—1)N forij=1,..,N.
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Poisson Equation: linear system

m Using the vector z, the five-point formula has the form

2 (BZi1 1IN = Zit(=1)N=1 = Zit-(i=1)N+1 — ZitiN — Zis(j—2)N) = Qe (i=1)N

for 1 <i,j < N.with
disg—1yn =T
one-dimensional vector resulting in the corresponding mapping of f.
m Replacing the indices by k = i + (j — 1)N we obtain the easier form

1
W(4Zk — Zk1 = Zkp1 — ZeyN — Zk—N) = Gk

for 1<k< N2

m Thus, the entries in row k of the coefficient matrix contain five entries which
are gy =4 and O k1 = Okk—1 = Ok k4N = A k—N = — 1.
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m The building of the vector d and the coefficient matrix A = (gj).
i,j=1,..,N?, can be performed by the following algorithm.

m The loopsoveriandj,i,j=1,..., N, visit the mesh points (i, /) and build one
row of the matrix A of size N2 x N2,

m When (/,))is an inner point of the mesh, i.e., i,j # 1, N, the corresponding
row of A contains five elements at the position k, k + 1,k — 1,k + N,k — N
fork =i+ (— T)N.

m When (i,)) is at the boundary of the inner part,i.e..i=1,j=1,i= N, or
j = N, the boundary values for ¢ are used.

/* Algorithm for building the matrix A and the vector d */
Initialize all entries of A with 0;
for(j=1;j <=N;j++)
for (i = 1;i <= N;i++){
/* Build d;, and row k of A withk =i+ (j — )N */
k=i+(G—-1-N;

ar i = 4/h%

dr = fij3

if (> 1) app—1 = —1/h* elsedy = di + 1/h*p(0, y));
if (i < N)agpyr = —1/h? elsedy = dp + 1/ h*p(1, y));

if (> Daggn = —1/h? elsed;, =di + 1/ h%p(x;, 0);
1f(j < N)agrsn = —1/h* elsedy = di + 1/ h?p(x;, 1);
}
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Poisson Equation: linear system

m The linear equation system resulting from this algorithm has the structure

B - 0

where | denotes the N x N unit matrix, which has the value 1 in the
diagonal elements and the value 0 in all other entries. The matrix B has the
structure

4 -1 0
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Poisson Equation: sparse structure

12 N n
1[xx X
Yy 2|xxx X
2 X .
N .
SN .
(N-1)N+1 -
N XX x
X XX
x XXx
i+N
x
i1 il vl X ¥
X
i . *.
.
2N
N+l .
X
123 N X XX
x XXX
X . X .
x
n X XX

Rectangular mesh in the x—y plane of size N x N and the n x n coefficient matrix
withn = N of the corresponding linear equation system of the five-point formula. The sparsity
structure of the matrix corresponds to the adjacency relation of the mesh points. The mesh can be
considered as adjacency graph of the non-zero elements of the matrix

= In summary, this formula represent a linear equation system with a sparse
coefficient matrix, which has non-zero elements in the main diagonal and
its direct neighbours as well as in the diagonals in distance N .

m Thus, the linear equation system resulting from the Poisson equation has a
banded structure, which should be exploited when solving the system.
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Tridiagonal Systems

m For the solution of a linear equation system Ax = y with a banded or
fridiagonal coefficient matrix A € R7*", specific solution methods can
exploit the sparse matrix structure.

m Amatrix A = (gj);j=1,....n € R7*"is called banded when its structure takes
the form of a band of non-zero elements around the principal diagonal.

m More precisely, this means a matrix A is a banded matrix if there exists
re N, r<n,with gy =0for|i —j| > r.

m The number r is called the semi-bandwidth of A. For r = 1 a banded matrix
is called tridiagonal matrix. We first consider the solution of tridiagonall
systems which are linear equation systems with tridiagonal coefficient
matrix.
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Gaussian Elimination for Tridiagonal Systems

For the solution of a linear equation system Ax = y with fridiagonal matrix A, the
Gaussian elimination can be used. Step k of the forward elimination (without
pivoting) results in the following computations:

| Compute ly := ofkk)/oiﬁ) fori=k+1,..,n
Subftract [ times the k-th row fromtherows i = k + 1, ..., n, i.e., compute
(k+1)

Q..

(k) (k
i —

_ , ) i i
= qj ik - ay’ fork <j<nandk <i<n.

The vector y is changed analogously.

Because of the tridiagonal structure of A, all matrix elements oy with i > k + 2
are zero elements, i.e., gy = 0. Thus, in each step k of the Gaussian elimination
only one elimination factor /., := /.1 , and only one row with only one new
element have to be computed.
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Gaussian Elimination for Tridiagonal Systems

Using the notation

by ¢ 0
Gy by
A= as  bs
: Ch—1
0 an bn
for the matrix elements and starting with ul = b1, these computations are
leyr = Qkgr/u,
Ukl = Brept = leyr - Cre
After n — 1 steps we obtain a LU decomposition A = LU of matrix A with
1 0 0 u 0
[ = /2 0 . U= 0 Uo
i =1 " Uno1 Cpo
0 In 1 0 0 Un
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Gaussian Elimination for Tridiagonal Systems

The right-hand side y is transformed correspondingly according to

Vi1 = Vi1 = lesr - Ve

The solution x is computed from the upper triangular matrix U by a backward
substitution, starting with x, = yn/un and solving the equations u;x; + cixj.1 = y;
one affer another resulting in
Yi G .
X = U’I - U;X,-+1 fori=n—1,...,1.

m The computational complexity of the Gaussian elimination is reduced to
O() for tridiagonal systems.

m However, the elimination phase computing I, and uy since the
computation of /1 depends on u, and the computation of vy, ; depends
on Ik+] .

m Thus, in this form the Gaussian elimination or LU decomposition has to be
computed sequentially and is not suitable for a parallel implementation.
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Recursive Doubling for Tridiagonal Systems

® An alternative approach for solving a linear equation system with
tridiagonal matrix is the method of recursive doubling or cyclic reduction.

m The methods of recursive doubling and cyclic reduction also use
elimination steps but contain potential parallelism. Both techniques can be
applied if the coefficient matrix is either symmetric and positive definite or
diagonal dominant.

m The elimination steps in both methods are applied to linear equation
systems Ax = y with the matrix structure

bixi+ cix, = wn,
aiXj_1+ bix;+ CiXix1 = Vi fori=2,...n—1,
QnXn_1+  bnXn = Yn.

m the method uses two equations i — 1 and i + 1 fo eliminate the variables
X;_1 and x;, 1 from equation /.

m This results in a new equivalent equation system with a coefficient matrix
with three non-zero diagonals where the diagonals are moved to the
outside.
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Recursive Doubling for Tridiagonal Systems

m Recursive doubling and cyclic reduction can be considered as two
implementation variants for the same numerical idea.

m The implementation of recursive doubling repeats the elimination step,
which finally results in a matrix structure in which only the elements in the
principal diagonal are non-zero and the solution vector x can be
computed easily.

m Cyclic reduction is a variant of recursive doubling which also eliminates
variables using neighboring rows. But in each step the elimination is only
applied to half of the equations and, thus, less computations are
performed.

m On the other hand, the computation of the solution vector x requires a
substitution phase.
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Recursive Doubling for Tridiagonal Systems

m Recursive doubling considers three neighboring equations i — 1,1/, i + 1 of
the equation system Ax = y with coefficient matrix A tridiagonal. These
equations are

Qi_1Xi_o +bi_1Xi_1 +Ci_1X; = VYi-1
QiXi—1 +biX; +CiXi = Vi
Qip1Xi  +bXi  +CiXu2 = Vi,

m Equation i — 1 is used to eliminate x;_; from the i-th equation and equation
i+ 1is used fo eliminate x;, ; from the i-th equation. This is done by
reformulating equations i — 1 and i + 1 to

Yi-r Qi1 Ci-1

Xi—2 = —X,
bi_y b bi_4

Xji—1 =

Yir1r _ Qi1 Citl

Xip1 = i
by b b

Xit-2,

and inserting those descriptions of x;_; and x;, | info equation /.
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Recursive Doubling for Tridiagonal Systems

m The resulting new equation i is
aMx;_p + bMx; 4 My p =y
with coefficients
Of])= 045”'@‘717
bV = bi+a oy +6" - ay,
e = sV e,

0 =

Vi +04,O) “Yie +/3,-(]) Yir
and
ol = —qy/bi_y,
B = —ci/byy1.
For the special cases i = 1,2, n — 1, n, the coefficients are given by
b =by + 50,y =y 450y,
b =bp+aM - cpy, v =bn+al) y, i,

N_ o (O JENQ)
ag =a,’=0,andc,’, =c,’ =0.
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Recursive Doubling for Tridiagonal Systems

m We reduced then to a linear equation system A x = y(1) with a coefficient
martrix

ool 0

o o) 0 o

(1) (1)
a 0 by

A — 8
) M
OA cn72
: : .0
0 a” o B

Comparing the structure of A(Y) with the structure of A, it can be seen that
the diagonals are moved fo the outside.
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Recursive Doubling for Tridiagonal Systems

m In the next step, this method is applied to the equations i — 2, /, i + 2 of the
equation system AN x = (D) for i = 5,6, ..., n — 4. Equation i — 2 is used to
eliminate x;_, from the ith equation and equation i + 2 is used to eliminate
X1 from the ith equation. This results in a new ith equation

a@xi_g + bPx; + c@x g = y@),

which contains the variables x;_4, x;, and ;. 4.

m Thecasesi=1,....,4,n— 3, ..., n are tfreated separately as shown for the first
elimination step.
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Recursive Doubling for Tridiagonal Systems

m Altogether a next equation system A x = y(2) results in which the
diagonals are further moved to the outside. The structure of A(2) is

b o o o P 0

2) @)

0 by c,

0

@
A(]) _ 0 Cn74
a? 0
022) 0
0
0 a® o o o0 b?
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Recursive Doubling for Tridiagonal Systems

m The following steps of the recursive doubling algorithm apply the same
method to the modified equation system of the last step. Step k transfers
the side diagonals 2€ — 1 positions away from the main diagonal,
compared to the original coefficient matrix. This is reached by considering
equations j — 2k, j, j 4 2k=1:

(k=1)

K1
(k=2571) (k=1 _
k=1 %ok *(bk,v,%f—l Xi—1 *CQZQk])—IXr e = Yiok—1:
q; x[_ ok—1 +b | Xi +<:It Xi+2’<*1 : = Yi
k=1) k— (k=1 B
k=17 Ok S k=1 TG Kok T gk

m Equation i — 24~ is used to eliminate x,_,«— from the ith equation and
equation i + 24~ is used fo eliminate x;, ,«1 from the ith equation.

m Again, the elimination is performed by computing the coefficients for the
next equation system.
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Recursive Doubling for Tridiagonal Systems

m After N = [log n] steps, the original matrix A is transformed into a diagonal
matrix ANV) N N
AN = diag(b{"™, ..., bV

in which only the main diagonal contains non-zero elements. The solution x
of the linear equation system can be directly computed using this matrix
and the correspondingly modified vector y(V);

xi=y™M /M fori=1,2,...n.
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Recursive Doubling for Tridiagonal Systems

m To summarize, the recursive doubling algorithm consists of two main
phases:

H Elimination phase: Compufe The values G b(k ), and y ) for
k=1,....[lognlandi=1,
2] Solu’rlon phose Compute xi = y(N /b“v) fori=1,...,nwith N = log n.
The first phase consists of [log] steps where in eoch step O(n) values are
computed.

m The sequential asymptotic runtime of the algorithm is therefore O(n - log n)
which is asymptotically slower than the O(n) runtime for the Gaussian
elimination approach described earlier.

m The advantage is that the computations in each step of the elimination
and the substitution phase are independent and can be performed in
parallel.
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Recursive Doubling for Tridiagonal Syste

i=3

i=4

i=5

i=6

i=7

i=8

k=0 k=1 k=2 k=3

Dependence graph for the computation steps of the recursive doubling algorithm in the
case of three computation steps and eight equations. The computations of step k are shown in
column k of the illustration. Column k contains one node for each equation i, thus representing the
computation of all coefficients needed in step k. Column 0 represents the data of the coefficient
matrix of the linear system. An edge from a node i in step k to anode j in step k + 1 means that
the computation at node j needs at least one coefficient computed at node i
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Cyclic Reduction for Tridiagonal Systems

m The recursive doubling algorithm offers a large degree of potential
parallelism but has a larger computational complexity than the Gaussian
elimination caused by computational redundancy. The cyclic reduction
algorithm is a modification of recursive doubling which reduces the
amount of computations to be performed.

m In each step, half the variables in the equation system are eliminated

which means that only haif of the values ), 6, ¢, and y) are
computed.

m A substitution phase is needed to compute the solution vector x.
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Cyclic Reduction for Tridiagonal Systems

m The elimination and the substitution phases of cyclic reduction are
described by the following two phases:
Elimination phase: For k = 1, ..., [log n] compute o, b*), ¢, and y* with
i = 2%, ..., nand step size 2% The number of equations of the tridiagonal form is
reduced by a factor of 1/2 in each step. In step k = |log n| there is only one
equation left for i = 2N with N = [log n].
Substitution phase: For k = [logn|....,0 compute x;:

(k)
ok = G X ok

http://adrianofesta.altervista.org/
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Cyclic Reduction for Tridiagonal Systems

®m In each computation step k, k = 1, ..., [log n|, of the elimination phase,
there are n/2% nodes representing the computations for the coefficients of
one equation. This results in

n Llog nJ
§+4+8+ Ao =n Z S <n

computation nodes with N = |log n| and, therefore, the execution time of
cyclic reduction is O(n).

m Thus, the computational complexity is the same as for the Gaussian
elimination; however, the cyclic reduction offers potential parallelism.
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k=0 k=1 k=2 k=3

Dependence graph illustrating the dependencies between neighboring computation steps
of the cyclic reduction algorithm for the case of three computation steps and eight equations in
analogy to the representation in Fig. 7.10. The first four columns represent the computations of the
coefficients. The last columns in the graph represent the computation of the solution vector x in
the second phase of the cyclic reduction algorithm, see (7.27)
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Parallel Implementation of Cyclic Reduction

m We consider a parallel algorithm for the cyclic reduction for p processors.
For the description of the phases we assume n = p - g for g € N and
g=2%forQe N.

m Each processor stores a block of rows of size g, i.e., processor P; stores the
rows of A with the numbers (i — 1)g+ 1,...;i-gfor1 <i<p.

m We describe the parallel algorithm with data exchange operations that
are needed for an implementation with a distributed address space. As
data distribution a row-blockwise distribution of the matrix A is used to
reduce the interaction between processors as much as possible.

m The parallel algorithm for the cyclic reduction comprises three phases: the
elimination phase stopping earlier than described above, an additional
recursive doubling phase, and a substitution phase.
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Cyclic Reduction for Tridiagonal Systems

m Phase 1: Parallel reduction of the cyclic reduction in log g steps: Each
processor computes the first Q = log g steps of the cyclic reduction
algorithm, i.e.,processor P; computes for k = 1, ..., Q the values

Kk Kk k k
a/.( ) bj(, ), cj(, ) and y/( )
forj=(i—1)-g+ 2k ..,i- g with step size 2.

After each computation step, processor P; receives four data values from
Py (if i > 1) and from processor P (if i < n) computed in the previous
step. Since each processor owns a block of rows of size g, no
communication with any other processor is required. The size of data to be
exchanged with the neighboring processors is a multiple of 4 since four

coefficients o}k) , b}k) , c}k), and yj(k) are transferred. Only one data block is

received per step and so there are at most 2Q messages of size 4 for each
step.

http://adrianofesta.altervista.org/ A, rse matrices



. =
” dlslm DISIM - Universita dell’ Aquila

Cyclic Reduction for Tridiagonal Systems

m Phase 2: Parallel recursive doubling for tridiagonal systems of size p:
Processor P; is responsible for the ith equation of the following
p-dimensional fridiagonal system

QX1+ biXi+ CiXiq =y, fori=1,...p

with
& - o9
b = b}é}
¢ = cl.(g) fori=!, ....p.
o=
Xi = x,(, q)

For the solution of this system, we use recursive doubling. Each processor is
assigned one equation. Processor P; performs [log p| steps of the recursive
doubling algorithm.
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Cyclic Reduction for Tridiagonal Systems

m In step k processor P; computes

a®, M, 8% and y*)

for which the values of

g, 1, 2% and y

’ i

k—1)

from the previous step computed by a different processor are required.
Thus, there is a communication in each of the [log p] steps with a message
size of four values. After step N’ = [log p| processor P; computes

% =y ™ /BN

I
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m Phase 3: Parallel substitution of cyclic reduction: After the second phase,
the values x; = x; - g are already computed. In this phase, each processor
P, i=1,.., p,computes the values x; withj = (i — 1)g+ 1,....ig — 1in
several steps according to the substitution rule. Instep k, k = Q@ — 1,...,0,
the elements x;, j = 2%, ..., n, with step size 2¢+! are computed.

Qsteps : log p steps . Qsteps
i=1
i=2
i=3
=4
s
i=6
i=7

i=8

i S =

phase 1 : phase 2 * phase3

<

Illustration of the parallel algorithm for the cyclic reduction for n = 8 equations and
p=2 Each of the p is responsible for g = 4 equations; we have Q = 2. The
first and the third phases of the computation have log g = 2 steps. The second phase has log p = 1
step. As recursive doubling is used in the second phase, there are more components of the solution

to be computed in the second phase coi _
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Cyclic Reduction: Parallel Execution Time

m The execution time of the parallel algorithm can be modeled by the
following run- fime functions. Phase 1 executes

Q:Iogq:logg =logn—logp

steps where in step k with 1 < k < @ each processor computes at most
q/2% coefficient blocks of 4 values each.

m Each coefficient block requires 14 arithmetic operations. The computation
time of phase 1 can therefore be estimated as

L g
Ti(n,p) = 14@-2?
k=1

Moreover, each processor exchanges in each of the Q steps fwo messages
of 4 values each with its two neighboring processors by participating in
single transfer operations.

m Since in each step the fransfer operations can be performed by all
processors in parallel without interference, the resulting communication
fime is

Ci(n,p) = 2Q- 4t = 2Iogg 4t
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Cyclic Reduction: Parallel Execution Time

m Phase 2 executes [log p| steps. In each step, each processor computes 4
coefficients requiring 14 arithmetic operations. Then the value x; = x; - g is
computed by a single arithmetic operation. The computation time is
therefore

To(n, p) = 14[log p] - 4top + top.

In each step, each processor sends and receives 4 data values from other
processors, leading to a communication time

Cy(n, p) = 2[log P] - At

In each step k of phase 3, k =0, ..., @ — 1, each processor computes 2«
components of the solution vector. For each component, five operations
are needed. Alfogether, each processor computes

S5 26 =29 — 1= g~ 1 components with one component already
computed in phase 2. The resulting computation time is

T3(n,p) =5(g—1)-top =5(n/p —1) - fop.
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Cyclic Reduction: Parallel Execution Time

m Moreover, each processor exchanges one data value with each of its
neighboring processors; the communication time is therefore

Cs(n,p) =2 - tw.
The resulting total computation time is
n n n
T(n,p) = (147 + 14 Jlogp] +5— —4) < top = (197 +14. Iogp) - Top-
P P P
The communication overhead is
C(n,p) = (2/09% + 2 [log p]) 4ty + 2ty &~ 2log n - 4ty + 21y,
m Compared to the sequential algorithm, the parallel implementation leads
to a small computational redundancy of 14 log p operations. The

communication overhead increases logarithmically with the number of
rows, whereas the computation time increases linearly.
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Solving the Discretized Poisson Equation 1D

m The cyclic reduction algorithm for banded matrices is suitable for the
solution of the discretized two-dimensional Poisson equation.

m The special structure has only four non-zero diagonals and the band has a
sparse structure.

m The use of the Gaussian elimination method would not preserve the sparse
banded structure of the matrix, since the forward elimination for eliminating
the two lower diagonals leads to fill-ins with non-zero elements between
the two upper diagonals. This induces a higher computational effort which
is needed for banded matrices with a dense band of semi-bandwidth N .

m [t is possible to build a method of cyclic reduction for banded matrices,
which preserves the sparse banded structure.
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Solving the Discretized Poisson Equation 1D

m We call the discretized Poisson equation Az = d considering A blocked
tridiagonal matrix as before.

m Using the notation for the banded system, we get

© _ 1 i—

B; .7h2Bfor/71,...,N,

©._ 1 ©._ | P
A= h2/(:|ndCl. = h2lfor/_l,...,N.

The vector d € R" consists of N subvectors D; € RN | i.e.,

Dy A 1)N+ T
d=|: |, wihpD =
Dn din
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Solving the Discretized Poisson Equation 1D

Analogously, the solution vector consists of N subvectors Z of length N each,
ie.

2 Z(_ )N+
z= . , withz =
AN, ZN
The initialization for the cyclic reduction algorithm is given by
8O .=
D = Dyfori=1,..,N,

D}k) :=0fork=0,...,[logN], j € Z\ {1,...,N},
Z:=0forjez\{1,..,N}.
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Solving the Discretized Poisson Equation 1D

In step k of the cyclic reduction, k = 1, ..., [log N], the matrices B¥) ¢ RV*N and
the vectors Dj(k) e RN forj=1,...,N are computed according to
B = (Bk=12 2/,

(k) _ k=1 pk=1) | pk=1)
D) = D; o1 +BX DD, + Dl

For k =0, ..., [log N] the equation of a cycling reduction has the special form

k
~Z_p+BRZ -7

= D}k) forj=1,...,n.
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Solving the Discretized Poisson Equation 1D

These three equations represent the method of cyclic reduction for the
discretized Poisson equation, which can be seen by induction. For k = 0, the
inizialization provides the initial equation system Az = d. For 0 < k < [log N] and
j€{1,...,N} the three equations

—Z +B;i)2k -4 = Do
k

~Z g +BYZ -7 - D/Ek;’

—Zj +B(k)Zj+2k - j+2k+l Dj+2k7

are considered. Now if we multiply the general equation by B from the left
resulfs in .
,B(k)ZF2k O B(k)Zsz — B(k)Dj( ).

Now adding this to the previous equation it gives the expected cyclic
reduction structure

k k
=2y =4+ BWBNZ — 2~ 7 e = D_p+ 8D + D,

J
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Solving the Discretized Poisson Equation 1D

In summary, the cyclic reduction for the discretized two-dimensional Poisson
equation consists of the following two steps:

| Elimination phase: For k = 1, ..., [logN], the matrices B¥) and the vectors
D}(,k) are computed for j = 2% ..., N with step size 2¥

Substitution phase: For k = [log N], ..., 0, the linear equation system
B(k)zj = pk) 4 Z o+

for j = 2K, ..., N with step size 2€*1 is solved.

In the first phase, [log N] matrices and O(N) subvectors are computed. The
computation of each matrix includes a matrix multiplication with time O(N®),
The computation of a subvector includes a matrix-vector multiplication with
complexity O(NQ). Thus, the first phase has a computational complexity of
O(NS log N). In the second phase, O(N) linear equation systems are solved. This
requires time O(N®) when the special structure of the matrices B() is not
exploited.
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Solving the Discretized Poisson Equation 2D

m In the case of a 2D Poisson equation, the banded structure of the matrix A
is replaced by a block-banded structure.

m This requires an additional work where all the blocks are managed using a
cyclic reduction technique.

m An easy and fast fo implement alternative is represented by Domain
Decomposition.
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Poisson Equation 2D: Domain Decomposition Methods

m Domain Decomposition can be used in the framework of any discretization
method for PDEs (FEM, FV, FD, SEM) to make their algebraic solution more
efficient on parallel computer platforms

m Domain Decomposition Methods allow the reformulation of a
boundary-value problem on a partition of the computational domain into
subdomains

m very convenient framework for the solution of heterogeneous or
multiphysics problems, i.e. those that are governed by differential equations
of different kinds in different subregions of the computational domain.
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Domain Decomposition Methods: Basic Idea

m By Domain Decomposition Methods methods the computational domain
where the boundary value problem is set is subdivided into two or more
subdomains on which discretized problems of smaller dimension are o be
solved.

m Parallel solution algorithms may be used.

m There are two ways of subdividing the computational domain: with disjoint
subdomains and with overlapping subdomains

4 o R // \ a0

b / : -/ x
s (v
2/ N N

Correspondingly, different DD algorithms will be set up.
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Examples of Subdivisions in Applications
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Domain Decomposition Methods: Model Problem

Consider the model problem: find u : Q — R s.1.

Lu=f InQ
u=0 on o9

L is a generic second order elliptic operator.

Example: Lu = Au (Poisson Equation)
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Schwarz Methods

Consider a decomposition of Q with overlap

/i/z% e

LY \_ /‘J

The iterative method: given ug ) on M, fork>1

L =f  inQy
solve u:fk) — k1) only
=0 on 691 \ I'1
Luf = f in Q,
) e
solve uy’ = ey onT>
Uy

(k)
= on 692 \ r2
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Choice of the trace on I',:

o if ugk) = multiplicative Schwarz method
o (k=1) iy
o if uy = additive Schwarz method

We have two elliptic bvp with Dirichlet conditions in ©; and £, and we
wish the two sequences {ugk)} and {ugk)} to converge to the restrictions

of the solution u of the original problem:
(k) _ (k) _

lim u;”’ = u,, and lim uy’ =u, .
k—s 00 1 loy k— 00 2 lo,

The Schwarz method applied to the model problem always converges,
with a rate that increases as the measure |['15| of the overlapping region
12 increases.
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One Example

Example. Consider the model problem

{ —u"(x)=0 a<x<b,
u(a) = u(b) =0,

where

Clearly, the method converges with a rate that reduces as the length of

the interval (y2,71) gets smaller.
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Non-Overlapping Decomposition
We partition now the domain Q in two disjoint subdomains:

/Y /N
/o |

a dell’ Aquila

[ 2 | \f/‘
| | | |

“\ ,“ \ /
N ./
The following equivalence result holds.
Theorem
The solution u of the model problem is such that u, = u; fori=1,2,
where u; is the solution to the problem
Lu,- =f in Q,‘
ui=0 ondQU\T

with interface conditions

un = u; and %—% onl
va 1m on  0On '
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Dirichlet-Neumann Method

Given uéo) on I, for k > 1 solve the problems:

L =f  ingy

uik) = uék_l) onl
uik)zo on 0 \ T,
Luék) = in Qz

Bugk) _ augk) onT

on
u?yzo on I\ T .

The equivalence theorem guarantees that when the two sequences {ugk)}

and {ugk)} converge, then their limit will be necessarily the solution to
the exact problem.

The DN algorithm is therefore consistent.

Its convergence however is not always guaranteed.
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Example. Let Q = (a, b), v € (a,b), L = —d?/dx? and f = 0. At every
k > 1 the DN algorithm generates the two subproblems:

7(u§k))” =0 a<x<vy
ugk) _ uék_l)

x=r
ugk) =0 x=a
—(ugk))":o y<x<b
Ky k)
() = () x=~
uék) =0 x = b.
The two sequences converge only if v > (a + b)/2:
£
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A variant of the DN algorithm can be set up by replacing the Dirichlet
condition in the first subdomain by

ugk) = 0u£k71) +(1- 9)u§k71) onl,

that is by introducing a relaxation which depends on a positive parameter
0.

In such a way it is always possible to reduce the error between two
subsequent iterates.

In the previous example, we can easily verify that, by choosing

ng_l)

Oopt = =777 »
opt uék—l) — u§k—1)

the algorithm converges to the exact solution in a single iteration.

More in general, there exists a suitable value €,,,x < 1 such that the DN
algorithm converges for any possible choice of the relaxation parameter
in the interval (0, Omax)-
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Neumann Neumann Method

Consider again a partition of 2 into two disjoint subdomains and denote
by A the (unknown) value of the solution u at their interface T

Consider the following iterative algorithm: for any given A\(9) on T, for
k >0 and i = 1,2, solve the following problems:

“AUF = i
(k+1) =& onrT
) _

,(k“ =0 on O\ T,
—AgptD = o inQ
a¢§k+1) _ 8u§k+1) - 3u£k+1) ol

k@r{ on on
P — 0 on 9\ T,

with ) (ks1)
+ +
AKFD) — NG ( wl 1y ) ,

where 6 is a positive acceleration parameter, while o; and o, are two
EBitive coefficients. N |
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Parallel Numerical Solution of the 2D Heat Equation

We consider developing a parallel numerical solver for the 2D heat equation
oru = Au
on the domain Q = [0, 1]2 (i.e., the unit square) with the initial conditions
u(x,y,0) = f(x,y)
and the boundary conditions
u©O,y, )y =u(l,y,t) =u(x,0,t) = u(x, 1,f) = 0.

We begin by dividing each of the two spatial dimensions into N intervals of
uniform size. In other words, we have Nh = 1, where h is the step size in space.
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Parallel Numerical Solution of the 2D Heat Equation

We also discretize the time dimension with a uniform step size k, which we
choose as

h2
T4
in order for the finite difference scheme to be stable. The discrete points on the
grid are denoted (as usual) by

k

Xi=1Ih, y;=jh, Th=nk.

By restricting the function u to the grid, we obtain a discretization of u:

ul,?j = U(X,‘, Yj’ Tl’l)
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Parallel Numerical Solution of the 2D Heat Equation

Let v,.”j denote our approximation of u,f’j. If we use a finite difference scheme
with explicit Euler as the time-stepping method, then we eventually arrive at the

following formula for vikj“:

k
n+1 _ \n n n n,,n n
Vig = Vigt g Vit Vigor = AVigVisr Vi)

The key point is that v,’jfr ! depends exclusively on the value of vk at the point
(X1, ;) as well as each of the four neighbouring points (x; = h, y; = h). The

update formula above is also known as a 5-point stencil.
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Distributed-memory parallelization

m We distribute the grid points onto a px x p, process mesh with a 2D block
distribution.

m In order for the process that owns the central block to advance its points
one time step, it must know the values of the neighbouring grid points:

m Note that these are stored on the four immediate neighbours of the
process. Algorithm 1 outlines a straightforward parallel algorithm.
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Algorithm 1
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Figure 1: Illustration of a block of grid points and one level of neighbouring grid points.

Algorithm 1 Basic
1: for k=0,1,...do
2 Send the interior borders to the neighbouring processes.
3:  Receive the exterior borders from the neighbouring processes.
4:  Advance the local block one time step.
5: end for
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Distributed-memory parallelization

m One drawback with Algorithm 1 is that the communications on line 2-3 are
not overlapped with computations. Therefore, the parallel execution time
will include the full cost of the communication. It is possible to overlap the
communication with computation by observing that the interior grid points
in the local block can be computed before the grid points on the border,
which means that we can communicate the border while advancing the
interior grid points. The resulting algorithm is outlined in Algorithm 2.

m Another drawback with Algorithm 1 is that we perform only 6(n?/p)
computations between each pair of communication phases. It is possible
to increase the granularity of the computations by a factor of r by
performing some redundant computations. The idea is o send in each
communication phase all the points that we need to advance the local
block r time steps.
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Algorithm 2

Algorithm 2 Overlapped
1: for k=0,1,... do
2:  Asynchronously send the interior borders to the neighbouring processes.
3:  Asynchronously receive the exterior borders from the neighbouring processes.
4:  Advance the interior of the local block one time step.
5 Wait until the sends and receives complete.
6:  Advance the borders of the local block one time step.
7: end for

© 0

e

?ﬁ

00000000
O00O0OO000O0
O00OO0OO000O0
00000000
00000000
00000000
O00OO0O000O0
O 0000000

7

© o0

?ﬁ

0 0 oseeoeecoedlooo0

O 0 O|s—e-e-e-o-6-ec4




," dlslm DISIM - Universita dell’ Aquila

Distributed-memory parallelization

m The three blue loops in Figure 2 illustrate the points needed for the case
r = 3. Note three things. First, we communicate with eight instead of four
neighbouring processes. Second, we communicate slightly more grid
points. Third, we perform redundant computations to advance the exterior
borders locally. Algorithm 3 outlines the communication-avoiding Basic
algorithm.

m Of course, we can also apply the same technique to increase the
granularity in Algorithm 2. The resulting communication-avoiding
Overlapped algorithm is outlined in Algorithm 4. Let us briefly tfouch upon
the issue of appropriate data structures. A good option is to store the local
my x my block at the center of a matrix of size (my + 2r) x (mx + 2r). Then
we can store the exterior borders received from the neighbouring
processes in the extra space created around the local block in the center
of the matrix.
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Algorithm 3

Algorithm 3 Communication-Avoiding Basic
1: for k=0,r,...do
2:  Send the r interior borders to the neighbouring processes.
3:  Receive the r exterior borders from the neighbouring processes.
4:  Advance the local block r time steps.
5: end for

Algorithm 4 Communication-Avoiding Overlapped
1: for k=0,r,...do
2:  Asynchronously send the r interior borders to the neighbouring processes.
3:  Asynchronously receive the r exterior borders from the neighbouring processes.
4:  Advance the interior of the local block r time steps.
5:  Wait until the sends and receives complete.
6
7

: Advance the r borders of the local block r time steps.
end for
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