
DISIM - Università dell’Aquila

Sparse Linear Systems and parallel iterative methods
Lesson 8.

Adriano FESTA

Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica, L’Aquila

DISIM, L’Aquila, 07.05.2019

adriano.festa@univaq.it

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Class outline

Poisson Equation

Tridiagonal Systems

General banded matrices

Domain Decomposition Methods

Heat Equation

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Motivation: Poisson Equation

As a typical example of an elliptic partial differential equation we consider
the Poisson equation with Dirichlet boundary conditions.

This equation is often called the model problem since its structure is simple
but the numerical solution is very similar to many other more complicated
partial differential equations,

The two-dimensional Poisson equation has the form

−∆u(x , y) = f (x , y) for all (x , y) ∈ Ω

with domain Ω ∈ R2.

The function u : R2 → R is the unknown solution function and the function
f : R2 → R is the right-hand side, which is continuous in Ω and its boundary.

The operator ∆ is the two-dimensional Laplace operator

∆ =
∂2

∂x2
+

∂2

∂y2

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Motivation: Poisson Equation

Using this notation, the Poisson equation can also be written as

−
∂2

∂x2
u(x , y)−

∂2

∂y2
u(x , y) = f (x , y) for all (x , y) ∈ Ω.

A model problem uses the unit square Ω = (0, 1)× (0, 1)and assumes a
Dirichlet boundary condition

u(x , y) = φ(x , y)for all (x , y) ∈ ∂Ω

where φ is a given function and ∂Ω is the boundary of domain Ω, which is
∂Ω = {(x , y)|0 ≤ x ≤ 1, y = 0 or y = 1} ∪ {(x , y)|0 ≤ y ≤ 1, x = 0 or x = 1}.
The boundary condition uniquely determines the solution u of the model
problem.
An example of the Poisson equation from electrostatics is the equation

∆u = −
ρ

ε0

where ρ is the charge density, ε0 is a constant, and u is the electrical
potential created by the charge.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Poisson Equation: Discretization

For the numerical solution of equation −∆u(x , y) = f (x , y), the method of
finite differences can be used, which is based on a discretization of the
domain Ω ∪ ∂Ω

The discretization is given by a regular mesh with N + 2 mesh points in
x-direction and in y-direction, where N points are in the inner part and 2
points are on the boundary. The distance between points in the x- or
y-direction is h = 1/(N + 1). The mesh points are

(xi , yj) = (ih, jh) for i, j = 0, 1, ...,N + 1.

The points on the boundary are the points with x0 = 0, y0 = 0, xN+1 = 1, or
yN+1 = 1.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Poisson Equation: Discretization

The unknown solution function u is determined at the points (xi , yj) of this
mesh, which means that values uij := u(xi , yj) for i, j = 0, 1, ...,N + 1 are to
be found.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Poisson Equation: FD Discretization

For the inner part of the mesh, these values are determined by solving a
linear equation system with N2 equations.

For each mesh point (xi , yj), i, j = 1, ...,N, a Taylor expansion is used for the x
or y-direction.

The Taylor expansion in x-direction is

u(xi + h, yj) = u(xi , yj) + h · ux (xi , yj) +
h2

2
uxx (xi , yj) +

h3

6
uxxx (xi , yj) + O(h4),

u(xi − h, yj) = u(xi , yj)− h · ux (xi , yj) +
h2

2
uxx (xi , yj)−

h3

6
uxxx (xi , yj) + O(h4).

where ux denotes the partial derivative in x -direction (i.e., ux = ∂u/∂x)
and uxx denotes the second partial derivative in x-direction (i.e.,
uxx = ∂2u/∂x2).

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Poisson Equation: FD Discretization

Adding these two Taylor expansions results in

u(xi + h, yj) + u(xi − h, yj) = 2u(xi , yj) + h2uxx (xi , yj) + O(h4).

Analogously, the Taylor expansion for the y-direction can be used to get

u(xi , yj + h) + u(xi , yj − h) = 2u(xi , yj) + h2uyy (xi , yj) + O(h4).

From the last two equations, an approximation for the Laplace operator
∆u = uxx + uyy at the mesh points can be derived

∆u(xi , yj) = −
1
h2

(4uij − ui+1,j − ui−1,j − ui,j+1 − ui,j−1),

where the higher order terms O(h4) are neglected.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Poisson Equation: Discretization

This pattern is known as five-point stencil. Using the approximation of ∆u
and the notation fij := f (xi , yj) for the values of the right-hand side, the
discretized Poisson equation or five-point formula results:

1
h2

(4uij − ui+1,j − ui−1,j − ui,j+1 − ui,j−1) = fij for 1 ≤ i, j ≤ N.

For the points on the boundary, the values of uij result from the boundary
condition and are given by

uij = φ(xi , yj) for (i, j) ∈ ∂Ω.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Poisson Equation: linear system

The five-point formula including boundary values represents a linear
equation system with N2 equations, N2 unknown values, and a coefficient
matrix A ∈ RN2×N2

.

In order to write the equation system with boundary values in matrix form
Az = d, the N2 unknowns uij , i, j = 1, ...,N, are arranged in row-oriented
order in a one-dimensional vector z of size n = N2 which has the form

z = (u11,u21, ...,uN1,u12,u22, ...,uN2,,u1N ,u2N , ...,uNN).

The mapping of values uij to vector elements zk is

zk := uij with k = i + (j − 1)N for i, j = 1, ...,N.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Poisson Equation: linear system

Using the vector z, the five-point formula has the form

1
h2

(4zi+(j−1)N − zi+(j−1)N−1 − zi+(j−1)N+1 − zi+jN − zi+(j−2)N) = di+(j−1)N

for 1 ≤ i, j ≤ N. with
di+(j−1)N = fij

one-dimensional vector resulting in the corresponding mapping of f .

Replacing the indices by k = i + (j − 1)N we obtain the easier form

1
h2

(4zk − zk−1 − zk+1 − zk+N − zk−N) = dk

for 1 ≤ k ≤ N2.

Thus, the entries in row k of the coefficient matrix contain five entries which
are akk = 4 and ak,k+1 = ak,k−1 = ak,k+N = ak,k−N = −1.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

The building of the vector d and the coefficient matrix A = (aij),
i, j = 1, ...,N2 , can be performed by the following algorithm.
The loops over i and j , i, j = 1, ...,N, visit the mesh points (i, j) and build one
row of the matrix A of size N2 × N2.
When (i, j)is an inner point of the mesh, i.e., i, j 6= 1,N, the corresponding
row of A contains five elements at the position k, k + 1, k − 1, k + N, k − N
for k = i + (j − 1)N.
When (i, j) is at the boundary of the inner part, i.e., i = 1, j = 1, i = N, or
j = N, the boundary values for φ are used.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Poisson Equation: linear system

The linear equation system resulting from this algorithm has the structure

1
h2


B −I 0

−I B
. . .

. . .
. . . −I

0 −I B

 · z = d

where I denotes the N × N unit matrix, which has the value 1 in the
diagonal elements and the value 0 in all other entries. The matrix B has the
structure

B =


4 −1 0

−1 4
. . .

. . .
. . . −1

0 −1 4



http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Poisson Equation: sparse structure

In summary, this formula represent a linear equation system with a sparse
coefficient matrix, which has non-zero elements in the main diagonal and
its direct neighbours as well as in the diagonals in distance N .
Thus, the linear equation system resulting from the Poisson equation has a
banded structure, which should be exploited when solving the system.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Tridiagonal Systems

For the solution of a linear equation system Ax = y with a banded or
tridiagonal coefficient matrix A ∈ Rn×n, specific solution methods can
exploit the sparse matrix structure.

A matrix A = (aij)i,j=1,...,n ∈ Rn×n is called banded when its structure takes
the form of a band of non-zero elements around the principal diagonal.

More precisely, this means a matrix A is a banded matrix if there exists
r ∈ N, r ≤ n, with aij = 0 for |i − j| > r .

The number r is called the semi-bandwidth of A. For r = 1 a banded matrix
is called tridiagonal matrix. We first consider the solution of tridiagonal
systems which are linear equation systems with tridiagonal coefficient
matrix.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Gaussian Elimination for Tridiagonal Systems

For the solution of a linear equation system Ax = y with tridiagonal matrix A, the
Gaussian elimination can be used. Step k of the forward elimination (without
pivoting) results in the following computations:

1 Compute lik := a(k)
ik /a(k)

kk for i = k + 1, ...,n.

2 Subtract lik times the k-th row from the rows i = k + 1, ...,n, i.e., compute

a(k+1)
ij = a(k)

ij − lik · a
(k)
kj for k ≤ j ≤ n and k < i ≤ n.

The vector y is changed analogously.

Because of the tridiagonal structure of A, all matrix elements aik with i ≥ k + 2
are zero elements, i.e., aik = 0. Thus, in each step k of the Gaussian elimination
only one elimination factor lk+1 := lk+1,k and only one row with only one new
element have to be computed.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Gaussian Elimination for Tridiagonal Systems

Using the notation

A =



b1 c1 0
a2 b2 c2

a3 b3
. . .

. . .
. . . cn−1

0 an bn


for the matrix elements and starting with u1 = b1, these computations are

lk+1 = ak+1/uk ,

uk+1 = bk+1 − lk+1 · ck .

After n− 1 steps we obtain a LU decomposition A = LU of matrix A with

L =


1 0 0

l2 0
. . .

. . .
. . . −1

0 ln 1

 , U =


u1 c1 0

0 u2
. . .

. . . un−1 cn−1
0 0 un


http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Gaussian Elimination for Tridiagonal Systems

The right-hand side y is transformed correspondingly according to

ȳk+1 = yk+1 − lk+1 · ȳk .

The solution x is computed from the upper triangular matrix U by a backward
substitution, starting with xn = ȳn/un and solving the equations uixi + cixi+1 = ȳi
one after another resulting in

xi =
ȳi

ui
−

ci

ui
xi+1 for i = n− 1, ..., 1.

The computational complexity of the Gaussian elimination is reduced to
O(n) for tridiagonal systems.

However, the elimination phase computing lk and uk since the
computation of lk+1 depends on uk and the computation of uk+1 depends
on lk+1.

Thus, in this form the Gaussian elimination or LU decomposition has to be
computed sequentially and is not suitable for a parallel implementation.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Recursive Doubling for Tridiagonal Systems

An alternative approach for solving a linear equation system with
tridiagonal matrix is the method of recursive doubling or cyclic reduction.

The methods of recursive doubling and cyclic reduction also use
elimination steps but contain potential parallelism. Both techniques can be
applied if the coefficient matrix is either symmetric and positive definite or
diagonal dominant.

The elimination steps in both methods are applied to linear equation
systems Ax = y with the matrix structure

b1x1+ c1x2 = y1,
aixi−1+ bixi + cixi+1 = yi for i = 2, ...,n− 1,
anxn−1+ bnxn = yn.

the method uses two equations i − 1 and i + 1 to eliminate the variables
xi−1 and xi+1 from equation i.

This results in a new equivalent equation system with a coefficient matrix
with three non-zero diagonals where the diagonals are moved to the
outside.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Recursive Doubling for Tridiagonal Systems

Recursive doubling and cyclic reduction can be considered as two
implementation variants for the same numerical idea.

The implementation of recursive doubling repeats the elimination step,
which finally results in a matrix structure in which only the elements in the
principal diagonal are non-zero and the solution vector x can be
computed easily.

Cyclic reduction is a variant of recursive doubling which also eliminates
variables using neighboring rows. But in each step the elimination is only
applied to half of the equations and, thus, less computations are
performed.

On the other hand, the computation of the solution vector x requires a
substitution phase.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Recursive Doubling for Tridiagonal Systems

Recursive doubling considers three neighboring equations i − 1, i, i + 1 of
the equation system Ax = y with coefficient matrix A tridiagonal. These
equations are

ai−1xi−2 +bi−1xi−1 +ci−1xi = yi−1,
aixi−1 +bixi +cixi+1 = yi ,

ai+1xi +bi+1xi+1 +ci+1xi+2 = yi+1,

Equation i − 1 is used to eliminate xi−1 from the i-th equation and equation
i + 1 is used to eliminate xi+1 from the i-th equation. This is done by
reformulating equations i − 1 and i + 1 to

xi−1 =
yi−1

bi−1
−

ai−1

bi−1
xi−2 −

ci−1

bi−1
xi ,

xi+1 =
yi+1

bi+1
−

ai+1

bi+1
xi −

ci+1

bi+1
xi+2,

and inserting those descriptions of xi−1 and xi+1 into equation i.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Recursive Doubling for Tridiagonal Systems

The resulting new equation i is

a(1)xi−2 + b(1)xi + c(1)xi+2 = y(1)

with coefficients

a(1)
i = α

(1)
i · ai−1,

b(1) = bi + α
(1)
i · ci−1 + β

(1)
i · ai+1,

c(1) = β
(1)
i · ci+1,

y(1)
i = yi + α

(1)
i · yi−1 + β

(1)
i · yi+1,

and

α(1) := −ai/bi−1,

β(1) := −ci/bi+1.

For the special cases i = 1, 2,n− 1,n, the coefficients are given by

b(1) = b1 + β(1) · a2, y(1) = y1 + β(1) · y2,

b(1) = bn + α(1) · cn−1, y(1) = bn + α
(1)
n · yn−1,

a(1)
1 = a(1)

2 = 0, and c(1)
n−1 = c(1)

n = 0.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Recursive Doubling for Tridiagonal Systems

We reduced then to a linear equation system A(1)x = y(1) with a coefficient
matrix

A(1) =



b(1)
1 0 c(1)

1 0
0 b(1)

2 0 c(1)
2

a(1)
3 0 b(1)

3

. . .
. . .

a(1)
4

. . .
. . .

. . . c(1)
n−2

. . .
. . .

. . . 0
0 a(1)

n 0 b(1)
n


Comparing the structure of A(1) with the structure of A, it can be seen that
the diagonals are moved to the outside.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Recursive Doubling for Tridiagonal Systems

In the next step, this method is applied to the equations i − 2, i, i + 2 of the
equation system A(1)x = y(1) for i = 5, 6, ...,n− 4. Equation i − 2 is used to
eliminate xi−2 from the ith equation and equation i + 2 is used to eliminate
xi+2 from the ith equation. This results in a new ith equation

a(2)xi−4 + b(2)xi + c(2)xi+4 = y(2),

which contains the variables xi−4, xi , and xi+4.

The cases i = 1, ..., 4,n− 3, ...,n are treated separately as shown for the first
elimination step.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Recursive Doubling for Tridiagonal Systems

Altogether a next equation system A(2)x = y(2) results in which the
diagonals are further moved to the outside. The structure of A(2) is

A(1) =



b(2)
1 0 0 0 c(2)

1 0
0 b(2)

2 c(2)
2

0
. . .

. . .

0
. . . c(2)

n−4

a(2)
5

. . . 0

a(2)
6

. . . 0
. . .

. . . 0
0 a(2)

n 0 0 0 b(2)
n



http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Recursive Doubling for Tridiagonal Systems

The following steps of the recursive doubling algorithm apply the same
method to the modified equation system of the last step. Step k transfers
the side diagonals 2k − 1 positions away from the main diagonal,
compared to the original coefficient matrix. This is reached by considering
equations i − 2k−1, i, i + 2k−1:

a(k−1)

i−2k−1 x
i−2k +b(k−2k−1)

i−2k−1 xi−1 +c(k−1)

i−2k−1 xi = y
i−2k−1 ,

a(k−1)
i x

i−2k−1 +b(k−1)
i xi +c(k−1)

i x
i+2k−1 = yi ,

a(k−1)

i+2k−1 xi +b(k−1)

i+2k−1 x
i+2k−1 +c(k−1)

i+2k−1 x
i+2k = y

i+2k−1 ,

Equation i − 2k−1 is used to eliminate xi−2k−1 from the ith equation and
equation i + 2k−1 is used to eliminate xi+2k−1 from the ith equation.

Again, the elimination is performed by computing the coefficients for the
next equation system.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Recursive Doubling for Tridiagonal Systems

After N = dlog ne steps, the original matrix A is transformed into a diagonal
matrix A(N)

A(N) = diag(b(N)
1 , ...,b(N)

n)

in which only the main diagonal contains non-zero elements. The solution x
of the linear equation system can be directly computed using this matrix
and the correspondingly modified vector y(N):

xi = y(N)
i /b(N)

i for i = 1, 2, ...,n.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Recursive Doubling for Tridiagonal Systems

To summarize, the recursive doubling algorithm consists of two main
phases:

1 Elimination phase: Compute the values a(k)
i , b(k)

i , c(k)
i , and y(k)

i for
k = 1, ..., dlog ne and i = 1, ..., n .

2 Solution phase: Compute xi = y(N)
i /b(N)

i for i = 1, ..., n with N = log n.

The first phase consists of dloge steps where in each step O(n) values are
computed.

The sequential asymptotic runtime of the algorithm is therefore O(n · log n)
which is asymptotically slower than the O(n) runtime for the Gaussian
elimination approach described earlier.

The advantage is that the computations in each step of the elimination
and the substitution phase are independent and can be performed in
parallel.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Recursive Doubling for Tridiagonal Systems

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Cyclic Reduction for Tridiagonal Systems

The recursive doubling algorithm offers a large degree of potential
parallelism but has a larger computational complexity than the Gaussian
elimination caused by computational redundancy. The cyclic reduction
algorithm is a modification of recursive doubling which reduces the
amount of computations to be performed.

In each step, half the variables in the equation system are eliminated
which means that only half of the values a(k)

i , b(k)
i , c(k)

i , and y(k)
i are

computed.

A substitution phase is needed to compute the solution vector x.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Cyclic Reduction for Tridiagonal Systems

The elimination and the substitution phases of cyclic reduction are
described by the following two phases:

1 Elimination phase: For k = 1, ..., blog nc compute a(k)
i , b(k)

i , c(k)
i , and y(k)

i with
i = 2k , ..., n and step size 2k . The number of equations of the tridiagonal form is
reduced by a factor of 1/2 in each step. In step k = blog nc there is only one
equation left for i = 2N with N = blog nc.

2 Substitution phase: For k = blog nc...., 0 compute xi :

xi =
y(k)

i − a(k)
i · xi−2k − c(k)

i · xi+2k

b(k)
i

.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Cyclic Reduction for Tridiagonal Systems

In each computation step k , k = 1, ..., blog nc, of the elimination phase,
there are n/2k nodes representing the computations for the coefficients of
one equation. This results in

n
2

+
n
4

+
n
8

+ ...+
n
2k

= n ·
blog nc∑

i=1

1
2i
≤ n

computation nodes with N = blog nc and, therefore, the execution time of
cyclic reduction is O(n).

Thus, the computational complexity is the same as for the Gaussian
elimination; however, the cyclic reduction offers potential parallelism.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Cyclic Reduction for Tridiagonal Systems

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Parallel Implementation of Cyclic Reduction

We consider a parallel algorithm for the cyclic reduction for p processors.
For the description of the phases we assume n = p · q for q ∈ N and
q = 2Q for Q ∈ N .

Each processor stores a block of rows of size q, i.e., processor Pi stores the
rows of A with the numbers (i − 1)q + 1, ..., i · q for 1 ≤ i ≤ p.

We describe the parallel algorithm with data exchange operations that
are needed for an implementation with a distributed address space. As
data distribution a row-blockwise distribution of the matrix A is used to
reduce the interaction between processors as much as possible.

The parallel algorithm for the cyclic reduction comprises three phases: the
elimination phase stopping earlier than described above, an additional
recursive doubling phase, and a substitution phase.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Cyclic Reduction for Tridiagonal Systems

Phase 1: Parallel reduction of the cyclic reduction in log q steps: Each
processor computes the first Q = log q steps of the cyclic reduction
algorithm, i.e.,processor Pi computes for k = 1, ...,Q the values

a(k)
j , b(k)

j , c(k)
j and y(k)

j

for j = (i − 1) · q + 2k , ..., i · q with step size 2k .
After each computation step, processor Pi receives four data values from
Pi−1 (if i > 1) and from processor Pi+1 (if i < n) computed in the previous
step. Since each processor owns a block of rows of size q, no
communication with any other processor is required. The size of data to be
exchanged with the neighboring processors is a multiple of 4 since four
coefficients a(k)

j , b(k)
j , c(k)

j , and y(k)
j are transferred. Only one data block is

received per step and so there are at most 2Q messages of size 4 for each
step.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Cyclic Reduction for Tridiagonal Systems

Phase 2: Parallel recursive doubling for tridiagonal systems of size p:
Processor Pi is responsible for the ith equation of the following
p-dimensional tridiagonal system

āi x̄i−1 + b̄i x̄i + c̄i x̄i+1 = ȳi , for i = 1, ...,p

with
āi = a(Q)

i·q
b̄i = b(Q)

i·q
c̄i = c(Q)

i·q
ȳi = y(Q)

i·q
x̄i = x(Q)

i·q


for i =!, ...,p.

For the solution of this system, we use recursive doubling. Each processor is
assigned one equation. Processor Pi performs dlog pe steps of the recursive
doubling algorithm.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Cyclic Reduction for Tridiagonal Systems

In step k processor Pi computes

ā(k)
i , b̄(k)

i , c̄(k)
i and ȳ(k)

i

for which the values of

ā(k−1)
i , b̄(k−1)

i , c̄(k−1)
i and ȳ(k−1)

i

from the previous step computed by a different processor are required.
Thus, there is a communication in each of the dlog pe steps with a message
size of four values. After step N′ = dlog pe processor Pi computes

x̄i = ȳ(N′)
i /b̄(N′)

i .

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Phase 3: Parallel substitution of cyclic reduction: After the second phase,
the values x̄i = xi · q are already computed. In this phase, each processor
Pi , i = 1, ...,p, computes the values xj with j = (i − 1)q + 1, ..., iq − 1 in
several steps according to the substitution rule. In step k , k = Q − 1, ..., 0,
the elements xj , j = 2k , ...,n, with step size 2k+1 are computed.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Cyclic Reduction: Parallel Execution Time

The execution time of the parallel algorithm can be modeled by the
following run- time functions. Phase 1 executes

Q = log q = log
n
p

= log n− log p

steps where in step k with 1 ≤ k ≤ Q each processor computes at most
q/2k coefficient blocks of 4 values each.
Each coefficient block requires 14 arithmetic operations. The computation
time of phase 1 can therefore be estimated as

T1(n,p) = 14top ·
Q∑

k=1

q
2k

Moreover, each processor exchanges in each of the Q steps two messages
of 4 values each with its two neighboring processors by participating in
single transfer operations.
Since in each step the transfer operations can be performed by all
processors in parallel without interference, the resulting communication
time is

C1(n,p) = 2Q · 4tw = 2 log
n
p
· 4tw .

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Cyclic Reduction: Parallel Execution Time

Phase 2 executes dlog pe steps. In each step, each processor computes 4
coefficients requiring 14 arithmetic operations. Then the value x̄i = xi · q is
computed by a single arithmetic operation. The computation time is
therefore

T2(n,p) = 14dlog pe · 4top + top.

In each step, each processor sends and receives 4 data values from other
processors, leading to a communication time

C2(n,p) = 2dlog pe · 4tw .

In each step k of phase 3, k = 0, ...,Q − 1, each processor computes 2k

components of the solution vector. For each component, five operations
are needed. Altogether, each processor computes∑Q−1

k=0 2k = 2Q − 1 = q − 1 components with one component already
computed in phase 2. The resulting computation time is

T3(n,p) = 5(q − 1) · top = 5(n/p − 1) · top.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Cyclic Reduction: Parallel Execution Time

Moreover, each processor exchanges one data value with each of its
neighboring processors; the communication time is therefore

C3(n,p) = 2 · tw .

The resulting total computation time is

T (n,p) =

(
14

n
p

+ 14 · dlog pe+ 5
n
p
− 4
)
· top ≈

(
19

n
p

+ 14 · log p
)
· top.

The communication overhead is

C(n,p) =

(
2log

n
p

+ 2 · dlog pe
)

4tw + 2tw ≈ 2 log n · 4tw + 2tw .

Compared to the sequential algorithm, the parallel implementation leads
to a small computational redundancy of 14 log p operations. The
communication overhead increases logarithmically with the number of
rows, whereas the computation time increases linearly.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Solving the Discretized Poisson Equation 1D

The cyclic reduction algorithm for banded matrices is suitable for the
solution of the discretized two-dimensional Poisson equation.

The special structure has only four non-zero diagonals and the band has a
sparse structure.

The use of the Gaussian elimination method would not preserve the sparse
banded structure of the matrix, since the forward elimination for eliminating
the two lower diagonals leads to fill-ins with non-zero elements between
the two upper diagonals. This induces a higher computational effort which
is needed for banded matrices with a dense band of semi-bandwidth N .

It is possible to build a method of cyclic reduction for banded matrices,
which preserves the sparse banded structure.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Solving the Discretized Poisson Equation 1D

We call the discretized Poisson equation Az = d considering A blocked
tridiagonal matrix as before.

Using the notation for the banded system, we get

B(0)
i :=

1
h2

B for i = 1, ...,N,

A(0)
i :=

1
h2

I and C(0)
i :=

1
h2

I for i = 1, ...,N.

The vector d ∈ Rn consists of N subvectors Dj ∈ RN , i.e.,

d =

 D1
...
DN

 , with Dj =

 d(j−1)N+1
...
djN

 .

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Solving the Discretized Poisson Equation 1D

Analogously, the solution vector consists of N subvectors Zj of length N each,
i.e.,

z =

 Z1
...
ZN

 , with Zj =

 z(j−1)N+1
...
zjN

 .

The initialization for the cyclic reduction algorithm is given by

B(0) := B

D(0)
j := Dj for i = 1, ...,N,

D(k)
j := 0 for k = 0, ..., [log N], j ∈ Z \ {1, ...,N},

Zj := 0 for j ∈ Z \ {1, ...,N}.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Solving the Discretized Poisson Equation 1D

In step k of the cyclic reduction, k = 1, ..., [log N], the matrices B(k) ∈ RN×N and
the vectors D(k)

j ∈ RN for j = 1, ...,N are computed according to

B(k) = (B(k−1))2 − 2I,

D(k)
j = Dj−2k−1 + B(k−1)D(k−1)

j + D(k−1)

j+2k−1 .

For k = 0, ..., [log N] the equation of a cycling reduction has the special form

−Zj−2k + B(k)Zj − Zj+2k = D(k)
j for j = 1, ...,n.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Solving the Discretized Poisson Equation 1D

These three equations represent the method of cyclic reduction for the
discretized Poisson equation, which can be seen by induction. For k = 0, the
inizialization provides the initial equation system Az = d. For 0 < k < [log N] and
j ∈ {1, ...,N} the three equations

−Zj−2k+1 +B(k)

j−2k −Zj = Dj−2k ,

−Zj−2k +B(k)Zj −Zj+2k = D(k)
i ,

−Zj +B(k)Zj+2k −xj+2k+1 = D(k)

j+2k ,

are considered. Now if we multiply the general equation by B(k) from the left
results in

−B(k)Zj−2k + B(k)B(k)Zj − B(k)Zj+2k = B(k)D(k)
j .

Now adding this to the previous equation it gives the expected cyclic
reduction structure

−Zj−2k+1 − Zj + B(k)B(k)Zj − Zj − Zj+2k+1 = Dj−2k + B(k)D(k)
j + D(k)

j+2k ,

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Solving the Discretized Poisson Equation 1D

In summary, the cyclic reduction for the discretized two-dimensional Poisson
equation consists of the following two steps:

1 Elimination phase: For k = 1, ..., [logN], the matrices B(k) and the vectors
D(k)

j are computed for j = 2k , ...,N with step size 2k

2 Substitution phase: For k = [log N], ..., 0, the linear equation system

B(k)Zj = D(k) + Zj−2k + Zj+2k

for j = 2k , ...,N with step size 2k+1 is solved.

In the first phase, [log N] matrices and O(N) subvectors are computed. The
computation of each matrix includes a matrix multiplication with time O(N3).
The computation of a subvector includes a matrix–vector multiplication with
complexity O(N2). Thus, the first phase has a computational complexity of
O(N3 log N). In the second phase, O(N) linear equation systems are solved. This
requires time O(N3) when the special structure of the matrices B(k) is not
exploited.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Solving the Discretized Poisson Equation 2D

In the case of a 2D Poisson equation, the banded structure of the matrix A
is replaced by a block-banded structure.

This requires an additional work where all the blocks are managed using a
cyclic reduction technique.

An easy and fast to implement alternative is represented by Domain
Decomposition.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Poisson Equation 2D: Domain Decomposition Methods

Domain Decomposition can be used in the framework of any discretization
method for PDEs (FEM, FV, FD, SEM) to make their algebraic solution more
efficient on parallel computer platforms

Domain Decomposition Methods allow the reformulation of a
boundary-value problem on a partition of the computational domain into
subdomains

very convenient framework for the solution of heterogeneous or
multiphysics problems, i.e. those that are governed by differential equations
of different kinds in different subregions of the computational domain.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Domain Decomposition Methods: Basic Idea

By Domain Decomposition Methods methods the computational domain
where the boundary value problem is set is subdivided into two or more
subdomains on which discretized problems of smaller dimension are to be
solved.

Parallel solution algorithms may be used.

There are two ways of subdividing the computational domain: with disjoint
subdomains and with overlapping subdomains

Correspondingly, different DD algorithms will be set up.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Examples of Subdivisions in Applications

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Domain Decomposition Methods: Model Problem

Consider the model problem: find u : Ω→ R s.t.{
Lu = f in Ω
u = 0 on ∂Ω

L is a generic second order elliptic operator.

Example: Lu = ∆u (Poisson Equation)

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Schwarz Methods

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

One Example

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Non-Overlapping Decomposition

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Dirichlet-Neumann Method

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Example:

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Neumann Neumann Method

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Parallel Numerical Solution of the 2D Heat Equation

We consider developing a parallel numerical solver for the 2D heat equation

∂t u = ∆u

on the domain Ω = [0, 1]2 (i.e., the unit square) with the initial conditions

u(x , y, 0) = f (x , y)

and the boundary conditions

u(0, y, t) = u(1, y, t) = u(x , 0, t) = u(x , 1, t) = 0.

We begin by dividing each of the two spatial dimensions into N intervals of
uniform size. In other words, we have Nh = 1, where h is the step size in space.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Parallel Numerical Solution of the 2D Heat Equation

We also discretize the time dimension with a uniform step size k, which we
choose as

k =
h2

4
in order for the finite difference scheme to be stable. The discrete points on the
grid are denoted (as usual) by

xi = ih, yj = jh, tn = nk.

By restricting the function u to the grid, we obtain a discretization of u:

un
i,j = u(xi , yj , tn).

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Parallel Numerical Solution of the 2D Heat Equation

Let vn
i,j denote our approximation of un

i,j . If we use a finite difference scheme
with explicit Euler as the time-stepping method, then we eventually arrive at the
following formula for vk+1

i,j :

vn+1
i,j = vn

i,j +
k
h2

(vn
i−1,j + vn

i,j−1 − 4vn
i,jv

n
i+1,j + vn

i,j+1)

The key point is that vk+1
i,j depends exclusively on the value of vk at the point

(xi , yj) as well as each of the four neighbouring points (xi ± h, yj ± h). The
update formula above is also known as a 5-point stencil.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Distributed-memory parallelization

We distribute the grid points onto a px × py process mesh with a 2D block
distribution.

In order for the process that owns the central block to advance its points
one time step, it must know the values of the neighbouring grid points:

Note that these are stored on the four immediate neighbours of the
process. Algorithm 1 outlines a straightforward parallel algorithm.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Algorithm 1

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Distributed-memory parallelization

One drawback with Algorithm 1 is that the communications on line 2–3 are
not overlapped with computations. Therefore, the parallel execution time
will include the full cost of the communication. It is possible to overlap the
communication with computation by observing that the interior grid points
in the local block can be computed before the grid points on the border,
which means that we can communicate the border while advancing the
interior grid points. The resulting algorithm is outlined in Algorithm 2.

Another drawback with Algorithm 1 is that we perform only θ(n2/p)
computations between each pair of communication phases. It is possible
to increase the granularity of the computations by a factor of r by
performing some redundant computations. The idea is to send in each
communication phase all the points that we need to advance the local
block r time steps.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Algorithm 2

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Distributed-memory parallelization

The three blue loops in Figure 2 illustrate the points needed for the case
r = 3. Note three things. First, we communicate with eight instead of four
neighbouring processes. Second, we communicate slightly more grid
points. Third, we perform redundant computations to advance the exterior
borders locally. Algorithm 3 outlines the communication-avoiding Basic
algorithm.

Of course, we can also apply the same technique to increase the
granularity in Algorithm 2. The resulting communication-avoiding
Overlapped algorithm is outlined in Algorithm 4. Let us briefly touch upon
the issue of appropriate data structures. A good option is to store the local
my ×mx block at the center of a matrix of size (my + 2r)× (mx + 2r). Then
we can store the exterior borders received from the neighbouring
processes in the extra space created around the local block in the center
of the matrix.

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

DISIM - Università dell’Aquila

Algorithm 3

http://adrianofesta.altervista.org/ A. FESTA, Sparse matrices

