
DISIM - Università dell’Aquila

Introduction to Message Passing Interface
Lesson 6.

Adriano FESTA

Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica, L’Aquila

DISIM, L’Aquila, 29.04.2019

adriano.festa@univaq.it

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Class outline

General principles

Message Passing Interface - MPI

Point-to-point communication

Collective communication

Communicators

Datatypes

Topologies

Inter-communicators

Profiling

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Principles of Message-Passing Programming

The logical view of a machine supporting the message-passing paradigm
consists of p processes, each with its own exclusive address space.

Each data element must belong to one of the partitions of the space;
hence, data must be explicitly partitioned and placed.

All interactions (read-only or read/write) require cooperation of two
processes – the process that has the data and the process that wants to
access the data.

These two constraints, while onerous, make underlying costs very explicit to
the programmer.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Principles of Message-Passing Programming

Message-passing programs are often written using the asynchronous or
loosely synchronous paradigms.

In the asynchronous paradigm, all concurrent tasks execute
asynchronously.

In the loosely synchronous model, tasks or subsets of tasks synchronize to
perform interactions. Between these interactions, tasks execute completely
asynchronously.

Most message-passing programs are written using the single program
multiple data (SPMD) model.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

The Building Blocks: Send and Receive Operations

The prototypes of these operations are as follows:
send(void *sendbuf, int nelems, int dest)
receive(void *recvbuf, int nelems, int source)

Consider the following code segments:

a = 100; receive(a, 1, 0) send(a, 1, 1); printf("a = 0;

The semantics of the send operation require that the value received by process
P1 must be 100 as opposed to 0.
This motivates the design of the send and receive protocols.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Non-Buffered Blocking Message Passing Operations

A simple method for forcing send/receive semantics is for the send
operation to return only when it is safe to do so.

In the non-buffered blocking send, the operation does not return until the
matching receive has been encountered at the receiving process.

Idling and deadlocks are major issues with non-buffered blocking sends.

In buffered blocking sends, the sender simply copies the data into the
designated buffer and returns after the copy operation has been
completed. The data is copied at a buffer at the receiving end as well.

Buffering alleviates idling at the expense of copying overheads.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Non-Buffered Blocking Message Passing Operations

sending

process

request to send

okay to send

request to send

okay to send

request to send

receiving

process

send

okay to send

data

receiving

process

receive

data

sending

process

receiving

process

receive

data

sending

process

send sendreceive

(a) Sender comes first; (b) Sender and receiver come (c) Receiver comes first;

idling at sender

idling minimized

at about the same time; idling at receiver

Handshake for a blocking non-buffered send/receive operation. It is easy to see
that in cases where sender and receiver do not reach communication point at

similar times, there can be considerable idling overheads.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Buffered Blocking Message Passing Operations

A simple solution to the idling and deadlocking problem outlined above is
to rely on buffers at the sending and receiving ends.

The sender simply copies the data into the designated buffer and returns
after the copy operation has been completed.

The data must be buffered at the receiving end as well.

Buffering trades off idling overhead for buffer copying overhead.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Buffered Blocking Message Passing Operations

data

receiving

process

send

receiving

process

sending

process

receive

sending

process

data

send

receive

Data copied to

buffer at receiver

Blocking buffered transfer protocols: (a) in the presence of communication
hardware with buffers at send and receive ends; and (b) in the absence of
communication hardware, sender interrupts receiver and deposits data in

buffer at receiver end.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Buffered Blocking Message Passing Operations

Deadlocks are still possible with buffering since receive operations block.

receive(a, 1, 1); receive(a, 1, 0); send(b, 1, 1); send(b, 1, 0);

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Non-Blocking Message Passing Operations

The programmer must ensure semantics of the send and receive.

This class of non-blocking protocols returns from the send or receive
operation before it is semantically safe to do so.

Non-blocking operations are generally accompanied by a check-status
operation.

When used correctly, these primitives are capable of overlapping
communication overheads with useful computations.

Message passing libraries typically provide both blocking and non-blocking
primitives.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Non-Blocking Message Passing Operations

request to send

Unsafe to

update

data being

sent

request to send

Unsafe to

update

data being

sent

receiving

process

send

okay to send

data

receive

(b) With hardware support

sending

process

Unsafe to read

data being received

receiving

process

send

okay to send

data

receive

(a) Without hardware support

sending

process

Non-blocking non-buffered send and receive operations (a) in absence of
communication hardware; (b) in presence of communication hardware.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Send and Receive Protocols

Non−Buffered

Non−Blocking OperationsBlocking Operations

Buffered

Sending process

returns after data

has been copied

into communication

buffer

Sending process

blocks until

matching receive

operation has been

encountered

Send and Receive

semantics assured by

corresponding operation

Programmer must

explicitly ensure

semantics by polling

to verify completion

Sending process

returns after initiating

DMA transfer to

buffer. This operation

may not be

completed on return

Space of possible protocols for send and receive operations.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Message Passing Interface (MPI)

A message-passing library specification

For parallel computers, clusters, and heterogeneous networks

Designed to aid the development of portable parallel software libraries

Designed to provide access to advanced parallel hardware for end users,
library writers, tool developers

MPI-1 standard widely accepted by vendors and programmers

MPI implementations available on most modern platforms

Huge number of MPI applications deployed

Several tools exist to trace and tune MPI applications

MPI provides rich set of functionality to support library writers, tools
developers and application programmers

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

MPI Salient Features

Point-to-point communication

Collective communication on process groups

Communicators and groups for safe communication

User defined datatypes

Virtual topologies

Support for profiling

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

A First MPI Program (Fortran)

C version

#include <stdio.h>
#include <mpi.h>
main(int argc, char **argv)
{
MPI_Init (&argc, &argv);
printf (\Hello World!\n");
MPI_Finalize ();
}

Fortran version

program mpi_example_one
use mpi
integer ierr
call MPI_INIT(ierr)
print *, ’Hello world!’
call MPI_FINALIZE(ierr)
end program

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Starting the MPI Environment

MPI INIT ()
Initializes MPI environment. This function must be called and must be the first MPI
function called in a program.

Syntax

int MPI Init(&argc,&argv); C

MPI INIT (IERROR) INTEGER IERROR; Fortran

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Exiting the MPI Environment

MPI FINALIZE()
Cleans up all MPI state. Once this routine has been called, no MPI routine (
even MPI INIT) may be called.

Syntax

int MPI Finalize(); C

MPI FINALIZE (IERROR) INTEGER IERROR; Fortran

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Finding Out About the Parallel Environment

The main questions in a parallel program are:

How many processes are there?

Who am I?

“How many” is answered with the function call MPI COMM SIZE()

“Who am I” is answered with the function call MPI COMM RANK ()

The rank is a number between zero and (size - 1)

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Example 1 (Fortran)

program mpirank
use mpi
integer::rank, size, ierr
call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
call MPI_COMM_SIZE (MPI_COMM_WORLD, size, ierr)
print *, ’Process up rank and size ’,rank, size
call MPI_FINALIZE(ierr)
end program

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Communicator

Communication in MPI takes place with respect to communicators

An MPI process can query a communicator for information about the
group, with MPI COMM SIZE and MPI COMM RANK .

MPI COMM RANK (comm, rank), MPI COMM RANK returns in rank the rank
of the calling process in the group associated with the communicator
comm.

MPI COMM SIZE (comm, size),MPI COMM SIZE returns in size the number of
processes in the group associated with the communicator comm.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Communicator

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Point to Point communications

Basic message passing process

Questions

To whom is data sent?

Where is the data?

What type of data is sent?

How much data are sent?

How does the receiver identify it?

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Message Organization in MPI

Message is divided into data and envelope

Data

buffer

count

datatype

Envelope

process identifier (source/destination rank)

message tag

communicator

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

MPI and Fortran data type

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

MPI and C data type

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Blocking and Non blocking

Blocking operation: An MPI communication operation is blocking, if return
of control to the calling process indicates that all resources, such as buffers,
specified in the call can be reused, e.g., for other operations. In particular,
all state transitions initiated by a blocking operation are completed before
control returns to the calling process.

Non blocking operation: An MPI communication operation is non blocking,
if the corresponding call may return before all effects of the operation are
completed and before the resources used by the call can be reused. Thus,
a call of a non-blocking operation only starts the operation. The operation
itself is com- pleted not before all state transitions caused are completed
and the resources specified can be reused.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Synchronous and Asynchronous communication

The terms blocking and non-blocking describe the behavior of operations from
the local view of the executing process, without taking the effects on other
processes into account. But it is also useful to consider the effect of
communication operations from a global viewpoint. In this context, it is
reasonable to distinguish between synchronous and asynchronous
communications:

Synchronous communication: The communication between a sending
process and a receiving process is performed such that the
communication operation does not complete before both processes have
started their communication operation. This means in particular that the
completion of a synchronous send indicates not only that the send buffer
can be reused, but also that the receiving process has started the
execution of the corresponding receive operation.

Asynchronous communication: Using asynchronous communication, the
sender can execute its communication operation without any
coordination with the receiving process.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Communication modes with MPI

There are four communication modes provided by MPI: standard,
synchronous, buffered and ready. The modes refer to four different types of
send. It is not meaningful to talk of communication mode in the context of
a receive. “Completion” of a send means by definition that the send buffer
can safely be re-used. The standard, synchronous and buffered sends differ
only in one respect: how completion of the send depends on the receipt
of the message.

Synchronous send : only completes when the receive has completed.

Buffered send : always completes (unless an error occurs), irrespective of
whether the receive has completed.

Standard send: either synchronous or buffered.

Ready send: always completes (unless an error occurs), irrespective of
whether the receive has completed.

Receive: completes when a message has arrived.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Standard send

The standard send completes once the message has been sent, which may or
may not imply that the message has arrived at its destination. The message
may instead lie “in the communications network” for some time. A program
using standard sends should therefore obey various rules:

It should not assume that the send will complete before the receive begins.
For example, two processes should not use blocking standard sends to
exchange messages, since this may on occasion cause deadlock.

It should not assume that the send will complete after the receive begins.
For example, the sender should not send further messages whose correct
interpretation depends on the assumption that a previous message arrived
elsewhere; it is possible to imagine scenarios (necessarily with more than
two processes) where the ordering of messages is non-deterministic under
standard mode.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Standard send

In summary, a standard send may be implemented as a synchronous send,
or it may be implemented as a buffered send, and the user should not
assume either case.

Processes should be eager readers, i.e. guarantee to eventually receive all
messages sent to them, else the network may overload.

If a program breaks these rules, unpredictable behaviour can result:
programs may run successfully on one implementation of MPI but not on
others, or may run successfully on some occasions and “hang” on other
occasions in a non-deterministic way.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

MPI Basic Send

The standard send has the following form
MPI SEND(buf ,count ,datatype,dest , tag,comm) where

buf is the address of the data to be sent.

count is the number of elements of the MPI datatype which buf contains.

datatype is the MPI datatype.

dest is the destination process for the message. This is specified by the rank
of the destination process within the group associated with the
communicator comm.

tag is a marker used by the sender to distinguish between different types of
messages. Tags are used by the programmer to distinguish between
different sorts of message.

comm is the communicator shared by the sending and receiving
processes. Only processes which have the same communicator can
communicate.

IERROR contains the return value of the Fortran version of the synchronous
send.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

MPI Synchronous Send

If the sending process needs to know that the message has been received
by the receiving process, then both processes may use synchronous
communication.

What actually happens during a synchronous communication is something
like this: the receiving process sends back an acknowledgement (a
procedure known as a ‘hand- shake’ between the processes).

This acknowledgement must be received by the sender before the send is
considered complete.

The standard send has the following form
MPI SSEND(buf ,count ,datatype,dest , tag,comm)

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

MPI Synchronous Send

If a process executing a blocking synchronous send is “ahead” of the
process executing the matching receive, then it will be idle until the
receiving process catches up.

Similarly, if the sending process is executing a non-blocking synchronous
send, the completion test will not succeed until the receiving process
catches up. Synchronous mode can therefore be slower than standard
mode.

Synchronous mode is however a safer method of communication because
the communication network can never become overloaded with
undeliverable messages.

It has the advantage over standard mode of being more predictable: a
synchronous send always synchronises the sender and receiver, whereas a
standard send may or may not do so. This makes the behaviour of a
program more deterministic. Debugging is also easier because messages
cannot lie undelivered and “invisible” in the network.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

MPI Buffered Send

Buffered send guarantees to complete immediately, copying the message
to a system buffer for later transmission if necessary. The advantage over
standard send is predictability the sender and receiver are guaranteed not
to be synchronised and if the network overloads, the behaviour is defined,
namely an error will occur.

Therefore a parallel program using buffered sends need only take heed of
the rule on pages 17-18. The disadvantage of buffered send is that the
programmer cannot assume any pre-allocated buffer space and must
explicitly attach enough buffer space for the program with calls to
MPI BUFFER ATTACH.

Non-blocking buffered send has no advantage over blocking buffered
send.

To use buffered mode, the user must attach buffer space:
MPI BUFFER ATTACH(buffer , size)

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

MPI Buffered Send

This specifies the array buffer of size bytes to be used as buffer space by
buffered mode. Of course buffer must point to an existing array which will not
be used by the programmer. Only one buffer can be attached per process at a
time.
Buffer space is detached with: MPI BUFFER DETACH(buffer , size) Any
communications already using the buffer are allowed to complete before the
buffer is detached by MPI.
Often buffered sends and non-blocking communication are alternatives and
each has pros and cons:

buffered sends require extra buffer space to be allocated and attached
by the user;

buffered sends require copying of data into and out of system buffers while
non-blocking communication does not;

non-blocking communication requires more MPI calls to perform the same
number of communications.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

MPI Ready Send

A ready send, like buffered send, completes immediately. The communication
is guaranteed to succeed normally if a matching receive is already posted.
However, unlike all other sends, if no matching receive has been posted, the
outcome is undefined. The sending process simply throws the message out onto
the communication network and hopes that the receiving process is waiting to
catch it. If the receiving process is ready for the message, it will be received,
else the message may be silently dropped, an error may occur, etc.
The idea is that by avoiding the necessity for handshaking and buffering
between the sender and the receiver, performance may be improved. Use of
ready mode is only safe if the logical control flow of the parallel program
permits it.
The ready send has a similar form to the standard send:
MPI RSEND(buf ,count ,datatype,dest , tag,comm) Non-blocking ready send
has no advantage over blocking ready send

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

MPI Basic Recv

The format of the standard blocking receive is:
MPI RECV (buf ,count ,datatype, source, tag,comm, status) where

buf is the address where the data should be placed once received (the
receive buffer). For the communication to succeed, the receive buffer must
be large enough to hold the message without truncation — if it is not,
behaviour is undefined. The buffer may however be longer than the data
received.

count is the number of elements of a certain MPI datatype which buf can
contain. The number of data elements actually received may be less than
this.

datatype is the MPI datatype for the message. This must match the MPI
datatype specified in the send routine.

source is the rank of the source of the message in the group associated
with the communicator comm. Instead of prescribing the source,
messages can be received from one of a number of sources by specifying
a wildcard, MPI ANY SOURCE, for this argument.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

MPI Basic Recv

tag is used by the receiving process to prescribe that it should receive only
a message with a certain tag. Instead of prescribing the tag, the wildcard
MPI ANY TAG can be specified for this argument.

comm is the communicator specified by both the sending and receiving
process. There is no wildcard option for this argument.

If the receiving process has specified wildcards for both or either of source
or tag, then the corresponding information from the message that was
actually received may be required. This information is returned in status,
and can be queried using routines described later.

IERROR contains the return value of the Fortran version of the standard
receive. Completion of a receive means by definition that a message
arrived i.e. the data has been received.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

MPI communications notes

The word “blocking” means that the routines described above only return once
the com- munication has completed. This is a non-local condition i.e. it might
depend on the state of other processes. The ability to select a message by
source is a powerful feature. For example, a source process might wish to
receive messages back from worker proc- esses in strict order. Tags are another
powerful feature. A tag is an integer labelling different types of message, such
as “initial data”, “client-server request”, “results from worker”. Note the
difference between this and the programmer sending an inte- ger label of his or
her own as part of the message — in the latter case, by the time the label is
known, the message itself has already been read. The point of tags is that the
receiver can select which messages it wants to receive, on the basis of the tag.
Point-to-point communications in MPI are led by the sending process “pushing”
mes- sages out to other processes — a process cannot “fetch” a message, it
can only receive a message if it has been sent.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

MPI communications notes

When a point-to-point communication call is made, it is termed posting a send
or posting a receive, in analogy perhaps to a bulletin board. Because of the
selection allowed in receive calls, it makes sense to talk of a send matching a
receive. MPI can be thought of as an agency — processes post sends and
receives to MPI and MPI matches them up.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Non Blocking Communication

The communications described so far are all blocking communications. This
means that they do not return until the communication has completed (in the
sense that the buffer can be used or re-used). Using blocking communications,
a first attempt at a parallel algorithm for the one-dimensional smoothing might
look like this:

for(iterations)
update all cells;

send boundary values to neighbours;

receive halo values from neighbours;

This produces a situation akin to that shown in where each process sends a
message to another process and then posts a receive. Assume the messages
have been sent using a standard send. Depending on implementation details a
standard send may not be able to complete until the receive has started. Since
every process is sending and none is yet receiving, deadlock can occur and
none of the communications ever complete.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Non Blocking Communication

There is a solution to the deadlock based on “red-black” communication in
which “odd” processes choose to send whilst “even” processes receive,
followed by a reversal of roles 1 — but deadlock is not the only problem with this
algorithm. Communication is not a major user of CPU cycles, but is usually
relatively slow because of the communication network and the dependency
on the process at the other end of the communication. With blocking
communication, the process is waiting idly while each communication is taking
place. Furthermore, the problem is exacerbated because the communications
in each direction are required to take place one after the other. The point to
notice is that the non-boundary cells could theoretically be updated during
the time when the boundary/halo values are in transit. This is known as latency
hiding because the latency of the communications is overlapped with useful
work. This requires a decoupling of the completion of each send from the
receipt by the neighbour. Non-blocking communication is one method of
achieving this.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Non Blocking Communication

In non-blocking communication the processes call an MPI routine to set up a
communication cation (send or receive), but the routine returns before the
communication has completed. The communication can then continue in the
background and the process can carry on with other work, returning at a later
point in the program to check that the communication has completed
successfully. The communication is therefore divided into two operations: the
initiation and the completion test. Non-blocking communication is analogous
to a form of delegation the user makes a request to MPI for communication
and checks that its request completed satisfactorily only when it needs to know
in order to proceed.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

The solution now looks like:

for(iterations) update boundary cells; initiate sending of boundary
values to neighbours; initiate receipt of halo values from neighbours;
update non-boundary cells; wait for completion of sending of boundary
values; wait for completion of receipt of halo values;

Note also that deadlock cannot occur and that communication in each
direction can occur simultaneously. Completion tests are made when the halo
data is required for the next iteration (in the case of a receive) or the boundary
values are about to be updated again (in the case of a send).

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Non Blocking Communication

The non-blocking routines have identical arguments to their blocking
counterparts except for an extra argument in the non-blocking routines. This
argument, request, is very important as it provides a handle which is used to
test when the communication has completed.

Standard send MPI ISEND

Synchronous send MPI ISSEND

Buffered send MPI BSEND

Ready send MPI RSEND

Receive MPI IRECV

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Non Blocking Communication

The sending process initiates the send using the following routine (in synchronous
mode): MPI ISSEND(buf ,count ,datatype,dest , tag,comm, request) It then
continues with other computations which do not alter the send buffer. Before
the sending process can update the send buffer it must check that the send
has com- pleted using the routines described in Testing communications for
completion (next pages).

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Testing communications for completion

When using non-blocking communication it is essential to ensure that the
communication has completed before making use of the result of the
communication or reusing the communication buffer.
Completion tests come in two types:

WAIT type these routines block until the communication has completed.
They are useful when the data from the communication is required for the
computa- tions or the communication buffer is about to be re-used.
Therefore a non-blocking communication immediately followed by a
WAIT-type test is equivalent to the corresponding blocking communication.

TEST type these routines return a TRUE or FALSE value depending on
whether or not the communication has completed. They do not block and
are useful in situations where we want to know if the communication has
completed but do not yet need the result or to re-use the communication
buffer i.e. the process can usefully perform some other task in the
meantime.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Testing a non-blocking communication for completion

The WAIT-type test is:
MPI WAIT (request , status) This routine blocks until the communication specified
by the handle request has completed. The request handle will have been
returned by an earlier call to a non-blocking communication routine.
The TEST-type test is: MPI TEST (request , flag, status) In this case the
communication specified by the handle request is simply queried to see if the
communication has completed and the result of the query (TRUE or FALSE) is
returned immediately in flag.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Multiple Communications

In this case the routines test for the completion of all of the specified
communications. The blocking test is as follows:

MPI WAITALL(count ,array of requests,array of statuses) This routine
blocks until all the communications specified by the request handles, array
of requests, have completed. The statuses of the communications are
returned in the array array of statuses and each can be queried in the
usual way for the source and tag if required. There is also a TEST-type
version which tests each request handle without blocking.

MPI TESTALL(count ,array of requests, flag,array of statuses) If all the
communications have completed, flag is set to TRUE, and information
about each of the communications is returned in array ofstatuses.
Otherwise flag is set to FALSE and array of statuses is undefined.

http://adrianofesta.altervista.org/ A. FESTA, MPI

DISIM - Università dell’Aquila

Completion of any of a number of communications

It is often convenient to be able to query a number of communications at a
time to find out if any of them have completed . This can be done in MPI as
follows:

MPI WAITANY (count ,array of requests, index , status) MPI WAITANY blocks
until one or more of the communications associated with the array of
request handles, array of requests, has completed. The index of the
completed communication in the array of requests handles is returned in
index, and its status is returned in status. Should more than one
communication have completed, the choice of which is returned is
arbitrary. It is also possible to query if any of the communications have
completed without blocking.

MPI TESTANY (count ,array of requests, index , flag, status) The result of the
test (TRUE or FALSE) is returned immediately in flag. Otherwise behaviour is
as for MPI WAITANY .

http://adrianofesta.altervista.org/ A. FESTA, MPI

