EE2 Mathematics:

Solutions to Example Sheet 5: Laplace Transforms

1. a) Recalling ${ }^{1}$ that $\mathcal{L}(\dot{x})=s \bar{x}(s)-x(0)$, Laplace Transform the pair of ODEs using the initial conditions $x(0)=y(0)=1$ to get

$$
2(s \bar{x}-1)+(s \bar{y}-1)+\bar{x}=-6 / s \quad(s \bar{x}-1)+2(s \bar{y}-1)+\bar{y}=0
$$

Solve these simultaneous equations in \bar{x} and \bar{y} to get

$$
\bar{x}(s)=\frac{3\left(s^{2}-3 s-2\right)}{s(s+1)(3 s+1)} \quad \bar{y}(s)=\frac{3(s+3)}{(s+1)(3 s+1)}
$$

Split these expressions into partial fractions

$$
\bar{x}(s)=-\frac{6}{s}+\frac{3}{s+1}+\frac{4}{s+\frac{1}{3}} \quad \bar{y}(s)=-\frac{3}{s+1}+\frac{4}{s+\frac{1}{3}}
$$

and then invert to find the solutions from the tables

$$
x(t)=-6+3 e^{-t}+4 e^{-\frac{1}{3} t} \quad y(t)=-3 e^{-t}+4 e^{-\frac{1}{3} t}
$$

(b) In the same manner as part a), use Laplace transforms on the ODEs to get

$$
(s \bar{x}-1)+5 \bar{x}+2 \bar{y}=\frac{1}{s+1} \quad s \bar{y}+2 \bar{x}+2 \bar{y}=0
$$

Solving these simultaneous equations we obtain

$$
\bar{x}(s)=\frac{(s+2)^{2}}{(s+1)^{2}(s+6)} \quad \bar{y}(s)=-\frac{2(s+2)}{(s+1)^{2}(s+6)}
$$

which split into partial fractions thus
$\bar{x}(s)=\frac{9}{25(s+1)}+\frac{1}{5(s+1)^{2}}+\frac{16}{25(s+6)} \quad \bar{y}(s)=-\frac{8}{25(s+1)}-\frac{2}{5(s+1)^{2}}+\frac{8}{25(s+6)}$
which invert to

$$
x(t)=\frac{1}{5}\left(\frac{9}{5}+t\right) e^{-t}+\frac{16}{25} e^{-6 t} \quad y(t)=-\frac{2}{5}\left(\frac{4}{5}+t\right) e^{-t}+\frac{8}{25} e^{-6 t}
$$

2. Laplace transforming the ODE and using the shift theorem, we get

$$
\left(s^{2}+1\right) \bar{x}(s)=\frac{e^{-s \pi}}{s}-\frac{e^{-2 s \pi}}{s} \Rightarrow \bar{x}(s)=\left(\frac{1}{s}-\frac{s}{s^{2}+1}\right) e^{-s \pi}-\left(\frac{1}{s}-\frac{s}{s^{2}+1}\right) e^{-2 s \pi}
$$

Noting that the $\mathcal{L}^{-1}\left(\frac{s}{s^{2}+1}\right)=\cos t$, and using the second shift theorem (formula sheet) which says that $\mathcal{L}[H(t-a) f(t-a)]=e^{-s a} \bar{f}(s)$, we find that the inversion becomes

$$
x(t)=H(t-\pi)[1-\cos (t-\pi)]-H(t-2 \pi)[1-\cos (t-2 \pi)]
$$

Noting that $H(t-\pi)=1$ for $t>\pi$ but is zero for $t<\pi$ (with equivalent results for $H(t-2 \pi)$), we obtain

$$
\begin{array}{ll}
x=0 & 0 \leq t \leq \pi \\
x=1+\cos t & \pi \leq t \leq 2 \pi \\
x=2 \cos t & 2 \pi \leq t
\end{array}
$$

Note that when $t \geq 2 \pi$ the two cosines add.

[^0]3. The function $f(t)$ is periodic in time t with fixed period T such that $f(t)=f(t-T)$ with $T>0$. Laplace transform (for $s>0$) and split the domain up into an infinite set of successive intervals
$$
\bar{f}(s)=\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{T} f(t) e^{-s t} d t+\int_{T}^{2 T} f(t) e^{-s t} d t+\int_{2 T}^{3 T} f(t) e^{-s t} d t+\ldots
$$

Now consider the integrals on the RHS: typically they all have the form $\int_{n T}^{(n+1) T} f(t) e^{-s t} d t$ on the time interval $[n T,(n+1) T]$. Use a substitution $\tau_{n}=t-n T$ and appeal to the fact that $f(t)$ is periodic $f\left(\tau_{n}+n T\right)=f\left(\tau_{n}\right)$ to obtain

$$
\int_{n T}^{(n+1) T} f(t) e^{-s t} d t=e^{-s n T} \int_{0}^{T} f\left(\tau_{n}\right) e^{-s \tau_{n}} d \tau_{n}
$$

The labels on the dummy variables τ_{n} within the integrals don't matter if the limits are the same; that is $\int_{0}^{T} f\left(\tau_{n}\right) e^{-s \tau_{n}} d \tau_{n}=\int_{0}^{T} f(t) e^{-s t} d t$. Hence we have

$$
\bar{f}(s)=\left(1+e^{-s T}+e^{-2 s T}+\ldots\right) \int_{0}^{T} f(t) e^{-s t} d t
$$

For $s>0$ the series sums to $\left(1-e^{-s T}\right)^{-1}$ to give the answer.
4. This example uses $T=1$ and the results of Q 3 on the sawtooth function, which is a piece-wise linear periodic function

$$
\bar{f}(s)=\left(1-e^{-s}\right)^{-1} \int_{0}^{1} t e^{-s t} d t
$$

Now it is easily shown that

$$
\int_{0}^{1} t e^{-s t} d t=\frac{1-e^{-s}}{s^{2}}-\frac{e^{-s}}{s}
$$

and so

$$
\bar{f}(s)=\left(1-e^{-s}\right)^{-1}\left[\frac{1-e^{-s}}{s^{2}}-\frac{e^{-s}}{s}\right]=\left[\frac{1}{s^{2}}-\frac{1}{s}\left(\frac{e^{-s}}{1-e^{-s}}\right)\right]
$$

On expanding $\left(1-e^{-s}\right)^{-1}$ as a series $(s>0)$ we have

$$
\bar{f}(s)=\frac{1}{s^{2}}-\frac{1}{s}\left(\frac{e^{-s}}{1-e^{-s}}\right)=\frac{1}{s^{2}}-\frac{1}{s}\left(e^{-s}+e^{-2 s}+e^{-3 s}+\ldots\right)
$$

[^0]: ${ }^{1}$ In the Formula Sheet.

