EE2 Mathematics

Solutions to Example Sheet 3: Complex Integration

1a) $F(z)=\left(z^{2}-2 z\right)^{-1}=\frac{1}{z(z-2)}$ has simple poles at $z=0$ and $z=2$ Only $z=0$ lies in the unit circle $|z|=1$. The residue is

$$
\lim _{z \rightarrow 0}\left[\frac{z}{z(z-2)}\right]=-\frac{1}{2}
$$

Using the residue theorem, $\oint_{C} F(z) d z=2 \pi i \times-\frac{1}{2}=-\pi i$.
1b) $F(z)=\frac{z+1}{4 z^{3}-z}=\frac{z+1}{z(2 z+1)(2 z-1)}$ has simple poles at $z=0, \pm \frac{1}{2}$. All of these count as they lie inside $|z|=1$.
i) Residue at $z=0$ is $\lim _{z \rightarrow 0}\left[\frac{z(z+1)}{z(2 z+1)(2 z-1)}\right]=-1$
ii) Residue at $z=-\frac{1}{2}$ is $\lim _{z \rightarrow-\frac{1}{2}}\left[\frac{\left(z+\frac{1}{2}\right)(z+1)}{z(2 z+1)(2 z-1)}\right]=\frac{1}{4}$
iii) Residue at $z=\frac{1}{2}$ is $\lim _{z \rightarrow \frac{1}{2}}\left[\frac{\left(z-\frac{1}{2}\right)(z+1)}{z(2 z+1)(2 z-1)}\right]=\frac{3}{4}$

The sum of the residues is $-1+\frac{1}{4}+\frac{3}{4}=0$. Hence the value of the integral is $2 \pi i \times 0=0$.
1c) $F(z)=\frac{z}{1+9 z^{2}}=\frac{z}{(3 z+i)(3 z-i)}$ has simple poles at $\pm i / 3$. Both count as they lie inside $|z|=1$.
i) Residue at $z=i / 3$ is $\lim _{z \rightarrow i / 3}\left[\frac{(z-i / 3) z}{9(z-i / 3)(z+i / 3)}\right]=1 / 18$
ii) Residue at $z=-i / 3$ is $\lim _{z \rightarrow-i / 3}\left[\frac{(z+i / 3) z}{9(z-i / 3)(z+i / 3)}\right]=1 / 18$

The sum of the residues is $1 / 18+1 / 18=1 / 9$. Hence the value of the integral is $2 \pi i \times 1 / 9=2 \pi i / 9$.
2) $F(z)=\frac{z}{(z-i)^{2}}$ has a double pole at $z=i$ lying inside the contour C, which is the rectangle with vertices at $\pm \frac{1}{2}+2 i$ and $\pm \frac{1}{2}-2 i$.

$$
\text { Residue at the double pole } z=i \text { is: } \lim _{z \rightarrow i}\left[\frac{d}{d z}\left\{\frac{(z-i)^{2} z}{(z-i)^{2}}\right\}\right]=1
$$

Hence the integral takes the value $2 \pi i$.
3) From the lectures we know that

$$
\int_{-\infty}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{2}}=2 \pi i \times\left\{\text { Sum of residues in upper } \frac{1}{2} \text {-plane of } F(z)=\frac{1}{\left(1+z^{2}\right)^{2}}\right\}
$$

$F(z)=\frac{1}{\left(1+z^{2}\right)^{2}}$ has double poles at $z=i$ and at $z=-i$: count only the double pole at $z=i$.

$$
\text { Residue at the pole } z=i \text { is: } \quad \lim _{z \rightarrow i}\left[\frac{d}{d z}\left\{\frac{(z-i)^{2}}{\left(1+z^{2}\right)^{2}}\right\}\right]=-\frac{2}{(2 i)^{3}}=-\frac{1}{4} i
$$

The Residue Theorem then gives $2 \pi i \times\left(-\frac{1}{4} i\right)=\frac{1}{2} \pi$ as the answer.
4) With $z=e^{i \theta}$ we use the fact that $\cos \theta=\frac{1}{2}\left(e^{i \theta}+e^{-i \theta}\right)=\frac{1}{2}\left(z+z^{-1}\right)$ and $d z=i z d \theta$. Take C as the unit circle $|z|=1$ with $\theta: 0 \rightarrow 2 \pi$. Then

$$
I=\int_{0}^{2 \pi} \frac{d \theta}{1-2 p \cos \theta+p^{2}}=\frac{1}{i} \oint_{C} \frac{d z}{z\left(1-p\left(z+z^{-1}\right)+p^{2}\right)}=\frac{i}{p} \oint_{C} \frac{d z}{(z-p)\left(z-p^{-1}\right)}
$$

This has simple poles at $z=p$ and $z=p^{-1}$. When $|p|<1$ the pole at $z=p$ lies inside C while $z=p^{-1}$ lies outside and doesn't count. The reverse is true when $|p|>1$.
(i) When $|p|<1$ the residue of the last integral at $z=p$ is $\frac{p}{p^{2}-1}$. Thus $I=2 \pi i \times \frac{i}{p^{2}-1}=-\frac{2 \pi}{p^{2}-1}$.
(ii) When $|p|>1$ the residue of the last integral at $z=p^{-1}$ is $\frac{p}{1-p^{2}}$, so $I=2 \pi i \times \frac{i}{1-p^{2}}=\frac{2 \pi}{p^{2}-1}$.

The closed contour C is comprised of the semicircular contour $H_{R}: \quad z=R e^{i \theta}$ for $0 \leq \theta \leq \pi$ in the upper $\frac{1}{2}$-plane plus that part of the real axis from $x=-R$ to $x=R$.

$$
F(z)=\frac{1}{\left(z^{2}+a^{2}\right)\left(z^{2}+b^{2}\right)}
$$

Now we know that

$$
\oint_{C} e^{i z} F(z) d z=\int_{-R}^{R} e^{i x} F(x) d x+\int_{H_{R}} e^{i z} F(z) d z
$$

where H_{R} is the semi-circle. We know that $\left(z^{2}+a^{2}\right)^{-1}\left(z^{2}+b^{2}\right)^{-1}$ decays as $R \rightarrow \infty$ in such a way that Jordan's lemma is satisfied; thus

$$
\lim _{R \rightarrow \infty} \int_{H_{R}} \frac{e^{i z}}{\left(z^{2}+a^{2}\right)\left(z^{2}+b^{2}\right)}=0
$$

Now consider the full closed contour integral $\oint_{C} e^{i z} F(z) d z$:

$$
\begin{aligned}
& \text { Residue at the simple pole at } \quad z=i a \quad \text { is } \\
& \text { Residue at the simple pole at } \quad z=i b \quad \text { is } \quad \frac{e^{-a}}{2 i a\left(b^{2}-a^{2}\right)} \\
& 2 i b\left(a^{2}-b^{2}\right)
\end{aligned}
$$

Hence

$$
\oint_{C} e^{i z} F(z) d z=2 \pi i \times \frac{1}{2 i\left(a^{2}-b^{2}\right)}\left(\frac{e^{-b}}{b}-\frac{e^{-a}}{a}\right)
$$

and

$$
\int_{-\infty}^{\infty} e^{i x} F(x) d x=\int_{-\infty}^{\infty} \frac{e^{i x} d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}=\int_{-\infty}^{\infty} \frac{\cos x d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}
$$

The imaginary part $i \sin x$ of $e^{i x}$ within the integral is not present because this has cancelled over the two halves of the domain $(-\infty, \infty)$. Thus we have the answer

$$
\int_{-\infty}^{\infty} \frac{\cos x d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}=\frac{\pi}{\left(a^{2}-b^{2}\right)}\left(\frac{e^{-b}}{b}-\frac{e^{-a}}{a}\right)
$$

