

Dense Matrix Algorithms Lesson 5.

Adriano FESTA

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, L'Aquila

DISIM, L'Aquila, 15.04.2019

- Matrix-Vector Multiplication
- Matrix-Matrix Multiplication
- Solving a System of Linear Equations

Matix Algorithms: Introduction

- Due to their regular structure, parallel computations involving matrices and vectors readily lend themselves to data-decomposition.
- Typical algorithms rely on input, output, or intermediate data decomposition.
- Most algorithms use one- and two-dimensional block, cyclic, and block-cyclic partitionings.

Matrix-Vector Multiplication

- We aim to multiply a dense $n \times n$ matrix A with an $n \times 1$ vector x to yield the $n \times 1$ result vector y.
- The serial algorithm requires n^2 multiplications and additions.

$$W = n^2. \tag{1}$$

- The n × n matrix is partitioned among n processors, with each processor storing complete row of the matrix.
- The $n \times 1$ vector x is distributed such that each process owns one of its elements.

Multiplication of an $n \times n$ matrix with an $n \times 1$ vector using rowwise block 1-D partitioning. For the one-row-per-process case, p = n.

- Since each process starts with only one element of x, an all-to-all broadcast is required to distribute all the elements to all the processes.
- Process P_i now computes $\gamma[i] = \sum_{i=0}^{n-1} (A[i, j] \times x[j]).$
- The all-to-all broadcast and the computation of y[i] both take time $\Theta(n)$. Therefore, the parallel time is $\Theta(n)$.

- Consider now the case when p < n and we use block 1D partitioning.
- Each process initially stores n/p complete rows of the matrix and a portion of the vector of size n/p.
- The all-to-all broadcast takes place among p processes and involves messages of size n/p.
- This is followed by n/p local dot products.
- Thus, the parallel run time of this procedure is

$$T_P = \frac{n^2}{p} + t_s \log p + t_w n. \tag{2}$$

This is cost-optimal.

Scalability Analysis:

• We know that $T_o = \rho T_P - W$, therefore, we have,

$$T_o = t_s p \log p + t_w n p. \tag{3}$$

- For isoefficiency, we have $W = KT_o$, where K = E/(1 E) for desired efficiency *E*.
- From this, we have $W = O(p^2)$ (from the t_w term).
- There is also a bound on isoefficiency because of concurrency. In this case, p < n, therefore, $W = n^2 = \Omega(p^2)$.
- Overall isoefficiency is $W = O(p^2)$.

- The $n \times n$ matrix is partitioned among n^2 processors such that each processor owns a single element.
- The $n \times 1$ vector x is distributed only in the last column of n processors.

Matrix-vector multiplication with block 2-D partitioning. For the one-element-per-process case, $p = n^2$ if the matrix size is $n \times n$.

- We must first aling the vector with the matrix appropriately.
- The first communication step for the 2-D partitioning aligns the vector x along the principal diagonal of the matrix.
- The second step copies the vector elements from each diagonal process to all the processes in the corresponding column using *n* simultaneous broadcasts among all processors in the column.
- Finally, the result vector is computed by performing an all-to-one reduction along the rows.

- Three basic communication operations are used in this algorithm: one-to-one communication to align the vector along the main diagonal, one-to-all broadcast of each vector element among the *n* processes of each column, and all-to-one reduction in each row.
- Each of these operations takes $\Theta(\log n)$ time and the parallel time is $\Theta(\log n)$.
- The cost (process-time product) is $\Theta(n^2 \log n)$; hence, the algorithm is not cost-optimal.

- When using fewer than n^2 processors, each process owns an $(n/\sqrt{p}) \times (n/\sqrt{p})$ block of the matrix.
- The vector is distributed in portions of n/\sqrt{p} elements in the last process-column only.
- In this case, the message sizes for the alignment, broadcast, and reduction are all (n/\sqrt{p}) .
- The computation is a product of an $(n/\sqrt{p}) \times (n/\sqrt{p})$ submatrix with a vector of length (n/\sqrt{p}) .

- The first alignment step takes time $t_s + t_w n / \sqrt{p}$.
- The broadcast and reductions take time $(t_s + t_w n/\sqrt{p}) \log(\sqrt{p})$.
- Local matrix-vector products take time $t_c n^2/p$.
- Total time is

$$T_P \approx \frac{n^2}{p} + t_s \log p + t_w \frac{n}{\sqrt{p}} \log p$$
 (4)

Scalability Analysis:

- $T_o = pT_p W = t_s p \log p + t_w n \sqrt{p} \log p.$
- Equating T_o with W, term by term, for isoefficiency, we have, $W = K^2 t_w^2 \rho \log^2 \rho$ as the dominant term.
- The isoefficiency due to concurrency is O(p).
- The overall isoefficiency is $O(p \log^2 p)$ (due to the network bandwidth).
- For cost optimality, we have, $W = n^2 = p \log^2 p$. For this, we have, $p = O\left(\frac{n^2}{\log^2 n}\right)$.

Matrix-Matrix Multiplication

- Consider the problem of multiplying two $n \times n$ dense, square matrices A and B to yield the product matrix $C = A \times B$.
- The serial complexity is $O(n^3)$.
- We do not consider better serial algorithms (Strassen's method), although, these can be used as serial kernels in the parallel algorithms.
- A useful concept in this case is called *block* operations. In this view, an $n \times n$ matrix A can be regarded as a $q \times q$ array of blocks $A_{i,j}$ ($0 \le i, j < q$) such that each block is an $(n/q) \times (n/q)$ submatrix.
- In this view, we perform q^3 matrix multiplications, each involving $(n/q) \times (n/q)$ matrices.

Matrix-Matrix Multiplication

- Consider two $n \times n$ matrices A and B partitioned into p blocks $A_{i,j}$ and $B_{i,j}$ ($0 \le i, j < \sqrt{p}$) of size $(n/\sqrt{p}) \times (n/\sqrt{p})$ each.
- Process P_{i,j} initially stores A_{i,j} and B_{i,j} and computes block C_{i,j} of the result matrix.
- Computing submatrix $C_{i,j}$ requires all submatrices $A_{i,k}$ and $B_{k,j}$ for $0 \le k < \sqrt{p}$.
- All-to-all broadcast blocks of *A* along rows and *B* along columns.
- Perform local submatrix multiplication.

Pseudocode comparison

- 1. procedure MAT MULT (A, B, C)
- 2. begin
- 3. for i := 0 to n - 1 do
- 4 **for** *j* := 0 **to** *n* - 1 **do**
- 5. begin
- 6. C[i, j] := 0;
- 7. for k := 0 to n - 1 do
- 8. $C[i, j] := C[i, j] + A[i, k] \times B[k, j];$
- endfor: 9
- 10. end MAT MULT

procedure BLOCK_MAT_MULT (A, B, C) 1.

2. begin

8.

- 3 for *i* := 0 to *q* - 1 do
- for *j* := 0 to *q* 1 do 4.
- begin 5. 6. Initialize all elements of Ci,j to zero; 7.
 - for k := 0 to q 1 do

$$C_{i,j} := C_{i,j} + A_{i,k} \times B_{k,j};$$

- endfor: 9
- 10. end BLOCK MAT MULT

Matrix-Matrix Multiplication

- The two broadcasts take time $2(t_s \log(\sqrt{p}) + t_w(n^2/p)(\sqrt{p} 1))$.
- The computation requires \sqrt{p} multiplications of $(n/\sqrt{p}) \times (n/\sqrt{p})$ sized submatrices.
- The parallel run time is approximately

$$T_{P} = \frac{n^{3}}{p} + t_{s} \log p + 2t_{w} \frac{n^{2}}{\sqrt{p}}.$$
 (5)

- The algorithm is cost optimal and the isoefficiency is $O(p^{1.5})$ due to bandwidth term t_w and concurrency.
- Major drawback of the algorithm is that it is not memory optimal.

Matrix-Matrix Multiplication: Cannon's Algorithm

- In this algorithm, we schedule the computations of the \sqrt{p} processes of the *i*th row such that, at any given time, each process is using a different block $A_{i,k}$.
- These blocks can be systematically rotated among the processes after every submatrix multiplication so that every process gets a fresh A_{i,k} after each rotation.

Solving a System of Linear Equations

Consider the problem of solving linear equations of the kind:

$a_{0,0}x_0$	+	$a_{0,1}x_1$	+	• • •	+	$a_{0,n-1}x_{n-1}$	=	b ₀ ,
$a_{1,0}x_0$	+	$a_{1,1}x_1$	+	• • •	+	$a_{1,n-1}x_{n-1}$	=	b ₁ ,
1		1.1				1.1		1.00
$a_{n-1,0}x_0$	+	$a_{n-1,1}x_1$	+		+	$a_{n-1,n-1}x_{n-1}$	=	b_{n-1} .

This is written as Ax = b, where A is an $n \times n$ matrix with $A[i, j] = a_{i,j}$, b is an $n \times 1$ vector $[b_0, b_1, \dots, b_{n-1}]^T$, and x is the solution.

Solving a System of Linear Equations

Two steps in solution are: reduction to triangular form, and back-substitution. The triangular form is as:

We write this as: Ux = y. A commonly used method for transforming a given matrix into an upper-triangular matrix is Gaussian Elimination.

Gaussian Elimimation

```
1.
          procedure GAUSSIAN_ELIMINATION (A, b, y)
2.
          begin
3.
                                          /* Outer loop */
             for k := 0 to n - 1 do
4.
             begin
5.
                for i := k + 1 to n - 1 do
6.
                   A[k, j] := A[k, j]/A[k, k]; /* Division step */
7.
                y[k] := b[k]/A[k, k];
8.
                A[k, k] := 1;
9.
                for i := k + 1 to n - 1 do
10.
                beain
11.
                   for i := k + 1 to n - 1 do
                      A[i, j] := A[i, j] - A[i, k] \times A[k, j]; /* Elimination step */
12.
13.
                   b[i] := b[i] - A[i, k] \times y[k];
                   A[i, k] := 0;
14.
15.
                endfor: /* Line 9 */
16.
             endfor: /* Line 3 */
17.
          end GAUSSIAN ELIMINATION
```

Serial Gaussian Elimination

Gaussian Elimination

The computation has three nested loops – in the *k*th iteration of the outer loop, the algorithm performs $(n - k)^2$ computations. Summing from k = 1..n, we have roughly $(n^3/3)$ multiplications-subtractions.

A typical computation in Gaussian elimination.

A. FESTA, Dense Matrix Algorithms

Parallel Gaussian Elimination

- Assume p = n with each row assigned to a processor.
- The first step of the algorithm normalizes the row. This is a serial operation and takes time (n k) in the *k*th iteration.
- In the second step, the normalized row is broadcast to all the processors. This takes time $(t_s + t_w(n - k - 1)) \log n$.
- Each processor can independently eliminate this row from its own. This requires (n k 1) multiplications and subtractions.
- The total parallel time can be computed by summing from k = 1..n 1 as

$$T_P = \frac{3}{2}n(n-1) + t_s n \log n + \frac{1}{2}t_w n(n-1) \log n.$$
 (6)

The formulation is not cost optimal because of the t_W term.

Parallel Gaussian Elimination

\mathbf{P}_0	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
P_2	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P ₃	0	0	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)
P_4	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P ₅	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
P ₆	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P ₇	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

\mathbf{P}_0	1	(0,1)	(0,2)	(0,3) $(0,4)$ $(0,5)$ $(0,6)$ $(0,7)$
P_1	0	1	(1,2)	(1,3) (1,4) (1,5) (1,6) (1,7)
P2	0	0	1	(2,3) (2,4) (2,5) (2,6) (2,7)
P3	0	0	0	1 (3,4) (3,5) (3,6) (3,7)
P_4	0	0	0	(4,3) ∛ (4,4) ∛ (4,5) ∛ (4,6) ∛ (4,7)
P ₅	0	0	0	(5,3) V(5,4) V(5,5) V(5,6) V(5,7)
P_6	0	0	0	(6,3)¥(6,4)¥(6,5)¥(6,6)¥(6,7)
P ₇	0	0	0	${}^{(7,3)} {V}\!\!\!/ {(7,4)} {V}\!\!\!/ {(7,5)} {V}\!\!\!/ {(7,6)} {V}\!\!\!/ {(7,7)}$

\mathbf{P}_0	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P_1	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
P_2	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P_3	0	0	0	1	(3,4)	(3,5)	(3,6)	(3,7)
P_4	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P ₅	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
P_6	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P ₇	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

(a) Computation:

(i) A[k,j] := A[k,j]/A[k,k] for $k \le j \le$

(ii) A[k,k] := 1

(b) Communication:

One-to-all brodcast of row A[k,*]

(c) Computation:

 $\begin{array}{ll} (i) \ \ A[i,j] := A[i,j] - A[i,k] \times A[k,j] \\ \ \ for \ \ k \leq i \leq n \ \ and \ \ k \leq j \leq n \end{array}$

(ii) A[i,k] := 0 for $k \le i \le n$

Gaussian elimination steps during the iteration corresponding to k = 3 for an 8 \times 8 matrix partitioned rowwise among eight processes.

http://adrianofesta.altervista.org/

A. FESTA, Dense Matrix Algorithms

- In the previous formulation, the (k + 1)st iteration starts only after all the computation and communication for the *k*th iteration is complete.
- In the pipelined version, there are three steps normalization of a row, communication, and elimination. These steps are performed in an asynchronous fashion.
- A processor P_k waits to receive and eliminate all rows prior to k. Once it has done this, it forwards its own row to processor P_{k+1}.

(0,0) (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)
(1,0) (1,1) (1,2) (1,3) (1,4)	(1,0) (1,1) (1,2) (1,3) (1,4)	(1,0) (1,1) (1,2) (1,3) (1,4)	(1,0) (1,1) (1,2) (1,3) (1,4)
(2,0) (2,1) (2,2) (2,3) (2,4)	(2,0) (2,1) (2,2) (2,3) (2,4)	(2,0) (2,1) (2,2) (2,3) (2,4)	(2,0) (2,1) (2,2) (2,3) (2,4)
(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)
(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)
(a) Iteration k = 0 starts	(b)	(c)	(d)
1 0.0 0.2 0.3 0.4	1 0.0 0.2 0.3 0.4	1 0.0 0.2 0.3 0.4	1 0.1 0.2 0.3 0.4
0 (1,1) (1,2) (1,3) (1,4)	0 1 (1.2) (1.3) (1.4)	9 (1.1) (1.2) (1.3) (1.4)	0 1 (1.2) (1.3) (1.4)
(2,0) (2,1) (2,2) (2,3) (2,4)	0 (2,1) (2,2) (2,3) (2,4)	0 (2,1) (2,2) (2,3) (2,4)	0 (2,1) (2,2) (2,3) (2,4)
(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)	0 (3,1) (3,2) (3,3) (3,4)	0 (3,1) (3,2) (3,3) (3,4)
(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	0 (4,1) (4,2) (4,3) (4,4)
(e) Iteration k = 1 starts	(f)	(g) Iteration $k = 0$ ends	(h)
1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)
0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)
0 0 (2,2) (2,3) (2,4)	0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)
0 (3,1) (3,2) (3,3) (3,4)	0 0 (3,2) (3,3) (3,4)	0 0 (3,2) (3,3) (3,4)	0 0 (3,2) (3,3) (3,4)
0 (4,1) (4,2) (4,3) (4,4)	0 (4,1) (4,2) (4,3) (4,4)	0 0 (4,2) (4,3) (4,4)	0 0 (4,2) (4,3) (4,4)
(i) Iteration k = 2 starts	(j) Iteration k = 1 ends	(k)	(1)
1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)
0 1 (1.2) (1.3) (1.4)	0 1 (1,2) (1,3) (1,4)	0 1 (1.2) (1.3) (1.4)	0 1 0.2 0.3 0.4
0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)
0 0 0 (3.3) (3.4)	0 0 0 1 (3.4)	0 0 0 1 (3.4)	0 0 0 1 (3.4)
0 0 (4,2) (4,3) (4,4)	0 0 0 (4,3) (4,4)	0 0 0 (4.3) (4.4)	0 0 0 0 (4.4)
	τογτο		
(m) Iteration k = 3 starts	(n)	(o) Iteration k = 3 ends	(p) Iteration k = 4
► Communicatio	on for k = 0, 3	Computatio	n for k = 0, 3
Communicatio	n for k = 1	Computatio	n for k = 1, 4
Communicatio	on for $k = 2$	Computatio	n for $k = 2$

Pipelined Gaussian elimination on a 5×5 matrix partitioned with one row per process.

.. FESTA, Dense Matrix Algorithms

- The total number of steps in the entire pipelined procedure is $\Theta(n)$.
- In any step, either O(n) elements are communicated between directly-connected processes, or a division step is performed on O(n) elements of a row, or an elimination step is performed on O(n) elements of a row.
- The parallel time is therefore $O(n^2)$.
- This is cost optimal.

	1	(0,1)	(0,2)	(0,3) $(0,4)$ $(0,5)$ $(0,6)$ $(0,7)$
P ₀	0	1	(1,2)	(1,3) (1,4) (1,5) (1,6) (1,7)
_	0	0	1	(2,3) (2,4) (2,5) (2,6) (2,7)
P ₁	0	0	0	$1 \begin{array}{c} (3,4) \\ (3,5) \\ (3,5) \\ (3,6) \\ (3,7)^{I} \\ ($
P	0	0	0	(4,3) $(4,4)$ $(4,5)$ $(4,6)$ $(4,7)$
P ₂	0	0	0	(5,3) (5,4) (5,5) (5,6) (5,7)
	0	0	0	(6,3) (6,4) (6,5) (6,6) (6,7)
P ₃	0	0	0	(7,3) (7,4) (7,5) (7,6) (7,7)

The communication in the Gaussian elimination iteration corresponding to k = 3 for an 8 \times 8 matrix distributed among four processes using block 1-D partitioning.

Parallel Gaussian Elimination: Block 1D with p < n

- The above algorithm can be easily adapted to the case when p < n.
- In the *k*th iteration, a processor with all rows belonging to the active part of the matrix performs (n k 1)n/p multiplications and subtractions.
- In the pipelined version, for n > p, computation dominates communication.
- The parallel time is given by: $2(n/p)\sum_{k=0}^{n-1}(n-k-1)$, or approximately, n^3/p .
- While the algorithm is cost optimal, the cost of the parallel algorithm is higher than the sequential run time by a factor of 3/2.

Parallel Gaussian Elimination: Block 1D with p < n

1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)	
0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)	P ₀
0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)	P ₁
0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)	-1
0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)	P ₂
0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)	12
0	0	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)	р
0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)	P ₃

-	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P ₀	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
D	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P ₁	0	0	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)
-	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P ₂	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P ₃	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

(a) Block 1-D mapping

(b) Cyclic 1-D mapping

Computation load on different processes in block and cyclic 1-D partitioning of an 8×8 matrix on four processes during the Gaussian elimination iteration corresponding to k = 3.

Parallel Gaussian Elimination: Cyclic 1D Mapping

- The load imbalance problem can be alleviated by using a cyclic mapping.
- In this case, other than processing of the last p rows, there is no load imbalance.
- This corresponds to a cumulative load imbalance overhead of $O(n^2p)$ (instead of $O(n^3)$ in the previous case).

Parallel Gaussian Elimination: 2-D Mapping

- Assume an $n \times n$ matrix A mapped onto an $n \times n$ mesh of processors.
- Each update of the partial matrix can be thought of as a scaled rank-one update (scaling by the pivot element).
- In the first step, the pivot is broadcast to the row of processors.
- In the second step, each processor locally updates its value. For this it needs the corresponding value from the pivot row, and the scaling value from its own row.
- This requires two broadcasts, each of which takes log *n* time.
- This results in a non-cost-optimal algorithm.

Parallel Gaussian Elimination: 2-D Mapping

1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
0	0	0	(3,3)	(3,4)		(3,6)	
0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	
0	0	0	1(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
0	0	0	(6,3)	(6,4)	(6,5)		
0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

 (a) Rowwise broadcast of A[i,k] for (k - 1) ≤ i ≤ n

	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
ĺ	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
ĺ	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
ĺ	0	0	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)
ĺ	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
ĺ	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
ĺ	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

(b) A[k,j] := A[k,j]/A[k,k]for $k \le j \le n$

1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
0	0	0	1	(3,4)	(3,5)	(3,6)	(3,7)
0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

(c) Columnwise broadcast of A[k,j] for k ≤ j ≤ n

1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
0	0	0	1	(3,4)	(3,5)	(3,6)	(3,7)
0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

(d) A[i,j] := A[i,j]-A[i,k] × A[k,j] for k ≤ i ≤ n and k ≤ j ≤ n

Various steps in the Gaussian elimination iteration corresponding to k = 3 for an 8×8 matrix on 64 processes arranged in a logical two-dimensional mesh.

Parallel Gaussian Elimination: 2-D Mapping with Pipelining

- We pipeline along two dimensions. First, the pivot value is pipelined along the row. Then the scaled pivot row is pipelined down.
- Processor $P_{i,j}$ (not on the pivot row) performs the elimination step $A[i,j] := A[i,j] A[i,k] \times A[k,j]$ as soon as A[i,k] and A[k,j] are available.
- The computation and communication for each iteration moves through the mesh from top-left to bottom-right as a "front."
- After the front corresponding to a certain iteration passes through a process, the process is free to perform subsequent iterations.
- Multiple fronts that correspond to different iterations are active simultaneously.

Parallel Gaussian Elimination: 2-D Mapping with Pipelining

- If each step (division, elimination, or communication) is assumed to take constant time, the front moves a single step in this time. The front takes $\Theta(n)$ time to reach $P_{n-1,n-1}$.
- Once the front has progressed past a diagonal processor, the next front can be initiated. In this way, the last front passes the bottom-right corner of the matrix $\Theta(n)$ steps after the first one.
- The parallel time is therefore O(n), which is cost-optimal.

2-D Mapping with Pipelining

		(0,2)	(0,3)	(0,4)		(0,1)	(0,2)	(0,3)	(0,4)
(1,0)	(1,1)	(1,2)	(1,3)	(1,4)	(1,0)	(1,1)	(1,2)	(1,3)	(1,4)
(2,0)	(2,1)	(2,2)	(2,3)	(2,4)	(2,0)	(2,1)	(2,2)	(2,3)	(2,4)
(3,0)	(3,1)	(3,2)	(3,3)	(3,4)	(3,0)	(3,1)	(3,2)	(3,3)	(3,4)
(4,0)	(4,1)	(4,2)	(4,3)	(4,4)	(4,0)	(4,1)	(4,2)	(4,3)	(4,4)

(b)

(f)

(j)

1	(0,1)	(0,2)	(0,3)	(0,4)	L	1	(0, 1)	(0,2)	(0,3)	ø
(1,0)	(1,1)	(1,2)	(1,3)	(1,4)	1	0	(1,1)	(1,2)	(1,3)	()
(2,0)	(2,1)	(2,2)	(2,3)	(2,4)	1	(2,0)	(2,1)	(2,2)	(2,3)	G
(3,0)	(3,1)	(3,2)	(3,3)	(3,4)		(3,0)	(3,1)	(3,2)	(3,3)	¢
(4,0)	(4,1)	(4,2)	(4,3)	(4,4)	1	(4,0)	(4,1)	(4,2)	(4,3)	(4

(a) Iteration k = 0 starts

(c)

(i)

(d)

(h)

1	(0,1)	(0,2)	(0,3)	(0,4)	1	(0,1)	(0,2)
0	(1,1)	(1,2)	(1,3)	(1,4)	0	(1,1)	(1,2)
(2,0)	(2,1)	(2,2)	(2,3)	(2,4)	0	(2,1)	(2,2)
(3,0)	(3,1)	(3,2)	(3,3)	(3,4)	(3,0)	(3,1)	(3,2)
(4,0)	(4,1)	(4,2)	(4,3)	(4,4)	(4,0)	(4, 1)	(4,2)

1.1)	(0,2)	(0,3)	(0,4)	1	(0,1)	(0,2)	(0,3)	ſ
1,1)	(1,2)	(1,3)	(1,4)	0	1	(1,2)	(1,3)	ľ
1)	(2,2)	(2,3)	(2,4)	0	(2,1)	(2,2)	(2,3)	ľ
(1)	(3,2)	(3,3)	(3,4)	0	(3,1)	(3,2)	(3,3)	ľ
LI)	(4,2)	(4,3)	(4,4)	(4,0)	(4,1)	(4,2)	(4,3)	ŀ

0

(g) Iteration k = 1 starts

(c)

1	(0,1)	(0,2)	(0,3)	(0,4)		1	(0,1)	(0,2)	(0,3)	(0,4)
0	1	(1,2)	(1,3)	(1,4)		0	1	(1,2)	(1,3)	(1,4)
0	(2,1)	(2,2)	(2,3)	(2,4)		0	0	(2,2)	(2,3)	(2,4)
0	(3,1)	(3,2)	(3,3)	(3,4)	1	0	(3,1)	(3,2)	(3,3)	(3,4)
4,0)	(4,1)	(4,2)	(4,3)	(4,4)		0	(4,1)	(4,2)	(4,3)	(4,4)

	(k)					(I)		
.1)	(4,2)	(4,3)	(4,4)	0	(4,1)	(4,2)	(4,3)	(4,4)
.1)	(3,2)	(3,3)	(3,4)	0	0	(3,2)	(3,3)	(3,4)
>	(2,2)	(2,3)	(2,4)	0	0	(2,2)	(2,3)	(2,4)
1	(1,2)	(1,3)	(1,4)	0	1	(1,2)	(1,3)	(1,4)
(1)	(0,2)	(0,3)	(0,4)	1	(0,1)	(0,2)	(0,3)	(0,4)

Pipelined Gaussian elimination for a 5 \times 5 matrix with 25 processors.

Parallel Gaussian Elimination:

- 2-D Mapping with Pipelining and p < n
 - In this case, a processor containing a completely active part of the matrix performs n²/p multiplications and subtractions, and communicates n/\sqrt{p} words along its row and its column.
 - The computation dominantes communication for n >> p.
 - The total parallel run time of this algorithm is $(2n^2/p) \times n$, since there are *n* iterations. This is equal to $2n^3/p$.
 - This is three times the serial operation count!

Parallel Gaussian Elimination:

				<pre>xxxx</pre>	>	
1	(0,1)	(0,2)	(0,3)	(0,4) (0,5	5) (0,6) (0,7)	1
0	1	(1,2)	(1,3)	(1,4) (1,5	5)(1,6)(1,7)	
0	0	1	(2,3)	(2,4) (2,5	5) (2,6) (2,7)	
0	0	0	1	(3,4) (3,5	5) (3,6) (3,7)	
0	0	0	(4,3)	(4,4) (4,5	5) (4,6) (4,7)	r
0	0	0	(5,3)	(5,4) (5,5	5) (5,6) (5,7)	
0	0	0	(6,3)	(6,4) (6,5	5) (6,6) (6,7)	
0	0	0	(7,3)	(7,4) (7,5	5)(7,6)(7,7)	,

2-D Mapping with Pipelining and p < nn

	1	(0,1)	(0,2) $(0,3)$ $(0,4)$ $(0,5)$ $(0,6)$ $(0,7)$
	0	1	(1,2) (1,3)(1,4) (1,5) (1,6) (1,7)
	0	0	1 (2,3) (2,4) (2,5) (2,6) (2,7)
	0	0	$0 \begin{array}{c} - & - \\ (3,3) \\ - & - \\ - & & - \\ - &$
Î	0	0	$0 \ \overline{(4,3)} \ (4,4) \ (4,5) \ (4,6) \ (4,7)$
	0	0	0 (5,3) (5,4) (5,5) (5,6) (5,7)
	0	0	0 (6,3) (6,4) (6,5) (6,6) (6,7)
	0	0	$0 (7,3) (7,4) (7,5) (7,6) (7,7) \\ (7,4) (7,5) (7,6) (7,7) \\ (7,6) (7,7) (7,6) (7,7) \\ (7,6) (7,7) (7,6) (7,7) \\ (7,6) (7,7) (7,6) (7,7) (7,6) (7,7) \\ (7,6) (7,7) (7,6) (7,7) \\ (7,6) (7,6) (7,7) (7,6) (7,7) \\ (7,6) (7,6) (7,7) (7,6) (7,7) \\ $

(a) Rowwise broadcast of A[i,k] for i = k to (n - 1)

(b) Columnwise broadcast of A[k,j] for i = (k + 1) to (n - 1)

The communication steps in the Gaussian elimination iteration corresponding to k = 3 for an 8 \times 8 matrix on 16 processes of a two-dimensional mesh.

уу

Parallel Gaussian Elimination:

2-D Mapping with Pipelining and p < n

1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
0	0	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)
0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

1	(0,4)	(0,1)	(0,5)	(0,2)	(0,6)	(0,3)	(0,7)
0	(4,4)	0	(4,5)	0	(4,6)	(4,3)	(4,7)
0	(1,4)	1	(1,5)	(1,2)	(1,6)	(1,3)	(1,7)
0	(5,4)	0	(5,5)	0	(5,6)	(5,3)	(5,7)
0	(2,4)	0	(2,5)	1	(2,6)	(2,3)	(2,7)
0	(6,4)	0	(6,5)	0	(6,6)	(6,3)	(6,7)
0	(3,4)	0	(3,5)	0	(3,6)	(3,3)	(3,7)
0	(7,4)	0	(7,5)	0	(7,6)	(7,3)	(7,7)

(a) Block-checkerboard mapping

(b) Cyclic-checkerboard mapping

Computational load on different processes in block and cyclic 2-D mappings of an 8×8 matrix onto 16 processes during the Gaussian elimination iteration corresponding to k = 3.

Parallel Gaussian Elimination: 2-D Cyclic Mapping

- The idling in the block mapping can be alleviated using a cyclic mapping.
- The maximum difference in computational load between any two processes in any iteration is that of one row and one column update.
- This contributes $\Theta(n\sqrt{p})$ to the overhead function. Since there are *n* iterations, the total overhead is $\Theta(n^2\sqrt{p})$.

Gaussian Elimination with Partial Pivoting

- For numerical stability, one generally uses partial pivoting.
- In the *k*th iteration, we select a column *i* (called the *pivot* column) such that A[k, i] is the largest in magnitude among all A[k, j] such that $k \le j < n$.
- The *k*th and the *i*th columns are interchanged.
- Simple to implement with row-partitioning and does not add overhead since the division step takes the same time as computing the max.
- Column-partitioning, however, requires a global reduction, adding a log p term to the overhead.
- Pivoting precludes the use of pipelining.

Gaussian Elimination with Partial Pivoting: 2-D Partitioning

- Partial pivoting restricts use of pipelining, resulting in performance loss.
- This loss can be alleviated by restricting pivoting to specific columns.
- Alternately, we can use faster algorithms for broadcast.

Solving a Triangular System: Back-Substitution

The upper triangular matrix U undergoes back-substitution to determine the vector x.

1.	procedure BACK_SUBSTITUTION (U, x, y)
2.	begin
3.	for $k := n - 1$ downto 0 do /* Main loop */
4.	begin
5.	$\overline{x[k]} := y[k];$
6.	for $i := k - 1$ downto 0 do
7.	$y[i] := y[i] - x[k] \times U[i, k];$
8.	endfor;
9.	end BACK_SUBSTITUTION

A serial algorithm for back-substitution.

Solving a Triangular System: Back-Substitution

- The algorithm performs approximately n²/2 multiplications and subtractions.
- Since complexity of this part is asymptotically lower, we should optimize the data distribution for the factorization part.
- Consider a rowwise block 1-D mapping of the n × n matrix U with vector y distributed uniformly.
- The value of the variable solved at a step can be pipelined back.
- Each step of a pipelined implementation requires a constant amount of time for communication and $\Theta(n/p)$ time for computation.
- The parallel run time of the entire algorithm is $\Theta(n^2/p)$.

Solving a Triangular System: Back-Substitution

- If the matrix is partitioned by using 2-D partitioning on a $\sqrt{p} \times \sqrt{p}$ logical mesh of processes, and the elements of the vector are distributed along one of the columns of the process mesh, then only the \sqrt{p} processes containing the vector perform any computation.
- Using pipelining to communicate the appropriate elements of U to the process containing the corresponding elements of y for the substitution step (line 7), the algorithm can be executed in $\Theta(n^2/\sqrt{p})$ time.
- While this is not cost optimal, since this does not dominante the overall computation, the cost optimality is determined by the factorization.