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Abstract In this survey we present some semi-Lagrangian schemes for the approx-
imation of weak solutions of first and second order differential problems related to
image processing and computer vision. The general framework is given by the the-
ory of viscosity solutions and, in some cases, of calculus of variations. The schemes
proposed here have interesting stability properties for evolutive problems since they
allow for large time steps, can deal with degenerate problems and are more accu-
rate with respect to standard finite difference/element methods. Several examples on
classical problems will illustrate these properties.

1 Introduction

Nonlinear Partial Differential Equations (PDEs) appear in many classical image pro-
cessing problems and there is a need for accurate and efficient numerical methods
to solve them. We need to handle several difficulties, including the fact that in most
cases these are degenerate problems with non smooth solutions. Classical methods
(Finite elements, Finite Differences) must be modified and often stabilized to deal
with this kind of problems. The goal of this paper is to present semi-Lagrangian
(SL) approximation techniques and illustrate their properties through the solution
of some classical image processing problems. SL methods were introduced long
time ago for linear advection problems. As far as we know the first example is
the Courant-Isaacson and Rees scheme [16] which dates back to the 60’s. How-
ever, their application to nonlinear problems is more recent as well as the analysis
of their mathematical properties in terms of consistency, stability, convergence and
convergence rates. A comprehensive introduction to this class of schemes can be
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found in the book by Falcone and Ferretti [29]. Let us just recall here some of
the motivations which make semi-Lagrangian schemes an interesting alternative to
more classical finite differences and finite elements techniques. The first and per-
haps more interesting point is that, due to the fact that they mimic the method of
characteristics, they allow for large time steps in evolutive problems. This property
is particularly useful when one looks for the limiting behavior for t going to infin-
ity in order to recover the solution of the corresponding stationary problem. The
second important property is that they introduce only a small numerical viscosity
so that their smoothing effect on the solution is very limited. The third property
to be mentioned is that they also have a natural interpretation in terms of the rep-
resentation formula for some nonlinear problems. One example is the solution of
the eikonal equation where the Hopf-Lax formula applies (see the next section for
details). Roughly speaking they can be interpreted as a discrete Hopf-Lax formula
and this means that their accuracy can be increased to high-order. Finally, they can
work on structured and unstructured grids. Although the latter are not very popular
among the image processing community they are a natural choice in other fields
of applications like fluid dynamics, meteorology, geophysics. The details regarding
the analytical properties of the schemes will not be illustrated since this survey is
mainly intended to present the schemes and their potential via the solution of some
test problems. In the next section we will briefly describe how the schemes are de-
rived for some first and second order problems which come from image processing.
We will deal with some simplified models in order to introduce the main ideas of SL
approximation and explain how the methods are constructed. In the following sec-
tions we will discuss more realistic problems. For each of them we will introduce
the model which we are going to solve, present the corresponding SL scheme and
illustrate some numerical experiments.

2 An introduction to semi-Lagrangian schemes
for nonlinear PDEs

We will consider three classical examples to show the main features and properties
of the SL approximation: Shape from Shading, segmentation via the level set (LS)
method and nonlinear filtering via Mean Curvature Motion (MCM). It is worth to
note that they all lead to nonlinear (possibly degenerate) partial differential models.
Let us start with the Shape from Shading problem. This is an inverse problem where
we want to compute the surface corresponding to a single image. A simple model
for this problem can be derived (see the next section for more detail) assuming
that the light source is at infinity in the direction ω , the surface is Lambertian, and
that we can neglect perspective deformations. We consider then the equation which
appears in most of the papers and corresponds to frontal light source at infinity, i.e.
ω = (0,0,1) and

|Du(x)|= f (x) for x ∈Ω , (1)
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where I : Ω ⊂ R2→ [0,1] represents the brightness function of the image and

f (x) =

√
1

I(x)2 −1. (2)

This is an eikonal equation, a first order stationary non linear pde. In order to solve
(1) we must provide some boundary conditions on ∂Ω and/or add some informa-
tions to select an unique solution. For an image containing an “occluding boundary”,
it is usual to consider this boundary as ∂Ω and the domain of reconstruction will be
the region Ω enclosed by the occluding boundary.

Another classical problem is the segmentation problem, where we want to de-
tect the boundaries of objects represented in a picture. A very popular method for
segmentation is based on the level set method, this application is often called ”ac-
tive contour” since the segmentation is obtained following the evolution of a simple
curve (a circumference for example) in the normal direction. We put a circumfer-
ence curve inside an object and follow its evolution until the curve touches the edges
of the object. It is important to know that the LS method has had a great success for
the analysis of front propagation problems for its capability to handle many different
physical phenomena within the same theoretical framework. Moreover, LS methods
allow to develop the analysis of interface propagation also after the onset of singu-
larities (as for example, when there is a topological change in the front). See the
books by Sethian [41] and Osher & Fedkiw [38].
In the LS methods the unknown is a ”representation” function u : R2×[0,T ]→ R
of the interface, the position of the interface Γt at time t is given by the 0-level set of
u(., t) , i.e.

Γt := {x : u(x, t) = 0}.

The model equation corresponding to the LS method (see f.e.[39] for details) is{
ut + c(x)|Du|= 0 x ∈ R2× [0,T ]
u(x) = u0(x) x ∈ R2,

(3)

where u0 must be a representation function for the initial front ∂Ω0, where Ω0 is a
given open bounded subset of R2, this meansu0(x)> 0, for x ∈ R2 \Ω 0

u0(x) = 0 for x ∈ ∂Ω0 := Γ0
u0(x)< 0 for x ∈Ω0.

(4)

Note that usually the scalar velocity c :R2→R is given and it represents the velocity
of the front in the normal direction η(x, t) := Du(x,t)

|Du(x,t)| . However, the same approach
applies to other scalar velocities. For example one can use it to describe isotropic and
anisotropic front propagation, Mean Curvature Motion (MCM) and other situations
when the velocity depends on some geometrical properties of the front. In summary,
this corresponds to the following choices:
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c(x, t) isotropic growth with time varying velocity (5)
c(x,η(x)) anisotropic growth, i.e. dependent on the normal direction (6)
c(x,k(x)) Mean Curvature Motion (7)

where k(x) is the mean curvature to the front. There are even models where the
velocity is obtained by convolution (nonlocal velocity).
Since the edges of objects inside a given image I are characterized by the fact that
there is a rapid change in the values of I, in the segmentation problem one can
take the gradient of I as an indicator of edges. If DI is big this means that we are
on an edge. For this reason, a popular choice of velocity in LS methods for the
segmentation problem is

c(x) := (1+ |DI(x)|p)−1 where p≥ 1.

With this choice, the velocity is 1 inside the region where the gray level is constant
and rapidly decreases to 0 when x is close to an edge (corresponding to a jump in
the derivative).
Another problem we will consider is non linear filtering. A classical model to treat
this problem is to consider (1) with velocity given by the Mean Curvature c(x, t) =
k(x, t), see [31]. In this case one gets{

ut(x, t) = div
(

Du(x,t)
|Du(x,t)|

)
|Du(x, t)|

u(x,0) = I0(x)
(8)

where I0 is a starting noisy image. This equation, in the level set formalism, rep-
resents the Mean Curvature Motion of curves, since each level set of u moves in
normal direction with a speed proportional to their mean curvature. The goal is to
recover a new image reducing the noise. Note that the evolutive equation is not well
defined at all points where the gradient vanishes so is a singular parabolic equa-
tion. This implies that classical finite difference and finite element methods must be
adapted in order to deal with the singularities, see [39] for a finite difference scheme.

Let us now turn our attention to the construction of the semi-Lagrangian schemes
for the above equations. For readers’ convenience, we will start from the linear
advection equation:

ut +b(x, t) ·Du = f (x, t) (x, t) ∈ R2×(0,T ). (9)

Here, b : R2×(0,T )→ R2 is a vectorfield (the drift) and f : R2×(0,T )→ R is the
source term. We look for the unique solution u : R2×(0,T )→ R of (9) satisfying
the initial condition

u(x,0) = u0(x) x ∈ R2 . (10)

A simple case, corresponds to f (x, t)≡ 0 and b(x, t)≡ c (constant). Then, the solu-
tion u is given by the representation formula
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u(x, t) = u0(x− c t) (x, t) ∈ R2×[0,T ) (11)

which can be easily obtained by the method of characteristics. The representation
formula (11) contains an important information: the solution at the point x at time t
only depends on the initial value at the point x−ct which is called the the foot of the
characteristic passing through (x, t) (more details on the method of characteristics
can be found on many classical books presenting the basic theory of partial differ-
ential equations, e.g. [25]). In order to build an approximation scheme for (9) we
need a grid in space and time. A simple choice is to build a space grid with constant
step ∆x

G∆x := {x j : x j = ( j1∆x, j2∆x) for j1 ∈ Z, j2 ∈ Z}. (12)

This grid is called lattice. For evolutive problems, we need to consider a space-time
grid

G∆x,∆ t := {(x j, tn) : x j = ( j1∆x, j2∆x), tn = n∆ t, for j1 ∈ Z, j2 ∈ Z, n ∈ N} (13)

where in the simplest case ∆ t is a constant time step. Naturally for numerical pur-
poses the number of nodes of our grids has to be finite and we will consider the
intersections of our grids with the computational domain Ω .
The basic idea behind all finite difference approximation is to replace every deriva-
tive by an incremental ratio. Thus, one obtains a finite dimensional problem whose
unknown are the values of the numerical solution at all the nodes of the lattice,
so that the value un

j associated to the node (x j, tn) should be regarded as an ap-
proximation of u(x j, tn). For the time derivative it is natural to choose the forward
incremental ratio

ut(x, t)≈
u(x, t +∆ t)−u(x, t)

∆ t
. (14)

For finite difference, it is well known that dealing with advection problems we need
to consider the incremental ratio in the up-wind direction, so that we must take the
first node on the left (right) if the velocity is positive (negative) in order to guarantee
the stability of the method. This corresponds to the following up-wind scheme for
the advection equation

ut(x j, tn)+b(x j, tn)ux(x j, tn)≈
u(x j, tn +∆ t)−u(x j, tn)

∆ t
+b(x j, tn)

un(x j1−1, j2−1)−un
j

∆x
.

(15)
Adopting the standard notation un

j = u(x j, tn), we write the scheme in the standard
explicit time marching form

un+1
j = un

j +
∆ t
∆x

b(x j, tn)(un
j1−1, j2−1−un

j). (16)

Semi-Lagrangian schemes are based on a different way to construct the approx-
imation of (9), in particular this affects the discretization of the advection term
b(x, t) ·Du. Since this is a directional derivative, we can write
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b(x j, tn) ·Du(x j, tn)≈−
un(x j−δb(x j, tn))−un

j

δ
, (17)

where δ is a “small” positive parameter, and un denotes an extension of the numer-
ical solution (at time tn) to be computed outside of the grid. Coupling the forward
finite difference in time with this approximation we get

un+1
j −un

j

∆ t
−

un(x j−δb(x j, tn))−un
j

δ
= 0, (18)

and finally, choosing δ = ∆ t, we obtain the scheme

un+1
j = un(x j−∆ tb(x j, tn)). (19)

This is the semi-Lagrangian scheme for (9) for f (x, t) = 0. Note that , for b(x, t)≡ c
(18) can be easily interpreted as a discrete version of the representation formula
(11). Even in this simple case, the value at the point x j−∆ tc does not belong to the
grid G∆x and must be obtained by interpolation on the values at the grid nodes. We
will denote by Π [w] the interpolation operator which reconstruct locally the values
of a function w only known on G∆x. A number of different choices are available
for Π , a popular choice is the piecewise linear interpolation which produces a first
order scheme.
Now let turn our attention to the nonlinear case and consider the eikonal equation.
First note that

|Du(x)|= max
a∈B(0,1)

a ·Du(x). (20)

In fact, the maximum in (20) is attained at a∗ = Du(x)/|Du(x)| and this shows that
the right-hand side coincides with |Du(x)|. Using now (20) to rewrite equation (3),
we get

ut + max
a∈B(0,1)

[c(x, t)a ·Du(x)] = 0. (21)

Since the term inside the square brackets is linear, we can apply the semi-Lagrangian
scheme for the advection equation obtaining the following scheme

un+1
j = min

a∈B(0,1)
[un(x j−∆ tc(x j, tn)a)]. (22)

The meaning is that to recover the correct solution of the nonlinear stationary equa-
tion one needs to solve a family of advection problems corresponding to a vector
field pointing in every direction and then to take minimum value among all possible
ones. This step clearly requires a constrained optimization method to be solved. In
practice, for low order accuracy it suffices to compare a finite number of values cor-
responding to a uniform discretization of the unit ball.
It is important to note that the SL scheme is up-wind by construction and this ex-
plains its strong stability properties which allow to use large time steps with respect
to other methods.
The derivation of an efficient discretization scheme for the MCM equation is more
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complicated. One can think to simply substitute cn
j = k j where k(x) is the curva-

ture. This can be done using a discrete version of the curvature for the level set
of the solution as in [39]. However, via a stochastic interpretation of the equation,
one can derive a semi-Lagrangian approximation where the role of characteristics
is taken by the solution of appropriate stochastic differential equation associated to
the equation. More informations on this approach for the MCM can be found in [10]
and are too technical to be presented here. However, we will present the resulting
SL scheme in section 4.1

In conclusion, the construction of SL-schemes is based on three essential build-
ing blocks: an integration backward along the characteristics (or the generalized
characteristics in the second order problem), an interpolation to get the values at the
foot of the characteristics and a optimization method to recover the minimum among
all the values. The first step relies on standard techniques for ordinary differential
equation, the interpolation can be obtained either by standard polynomial techniques
or via more sophisticated techniques as for example WENO (Weighted Essentially
Non Oscillatory) methods, see [12]. Finally, for the optimization step one can sim-
ply discretize the unit ball or use a minimization method without derivatives such as
Brent algorithm.

3 Shape from Shading

As we said, we want to reconstruct a surface u(x) from a single image.

Fig. 1 The image and its corresponding surface (approximation).

This means that given an image I we are looking for the surface u(x) corresponding
to the object represented in it. The irradiance function I is the datum in the model
since it is measured at each pixel x := (x1,x2) of the image, for example in terms
of a greylevel (from 0 to 255). To construct a continuous model, we will assume
that I takes real values in the interval [0,1]. The height function u which is the
unknown of the problem has to be reconstructed on the “reconstruction domain” Ω .
The characterization of the surface via a partial differential equation relies on several
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assumptions. Assume that there is a unique light source at infinity whose direction is
indicated by the unit vector ω = (ω1,ω2,ω3) ∈ R3. Also assume for simplicity that
ω is given. For a Lambertian surface of uniform albedo equal to 1, the reflectance
function giving the brightness at a point on the surface is R(n(x)) := ω ·n(x), where
n(x) is the unit normal to the surface at (x1,x2,u(x)). This equation is called the
irradiance equation. Recalling that the normal is given by n(x) = (−ux1 ,−ux2 ,1)
we obtain the following equation

I(x) =
(ω1,ω2) ·Du(x)−ω3√

1+ |Du(x)|2
for x ∈Ω , (23)

which is a first order non-linear partial differential equation of Hamilton-Jacobi
type. We have seen that in the vertical light source case this reduces to the eikonal
equation (1).

As we said, this equation must be complemented with boundary conditions. A
natural choice is to consider homogeneous Dirichlet type boundary conditions cor-
responding to flat background i.e., setting

u(x) = 0 for x ∈ ∂Ω . (24)

However, one can also choose a more general Dirichlet boundary condition

u(x) = g(x) for x ∈ ∂Ω . (25)

The solution of the above Dirichlet problems (23)-(24) or (23)-(25) will give the
surface corresponding to grey level I(x) measured in Ω . To set u(x) = g(x) at least
on a part of the boundary we must know something about the surface. This is the
case for surfaces obtained by revolution around an axis (as for our vase in Figure 3).
In order to illustrate one of the features of the SL scheme, let us consider a virtual
image corresponding to the surface

u(x1,x2) =

2(1−|x1|) x1 ∈ [−1,1], x2 ∈ [−1,− 1
2 |x1|− 1

2 ]
2(1−|x2|) x1 ∈ [−1,1], x2 ∈ [ 1

2 |x1|+ 1
2 ,1])

1−|x1| otherwise.

The surface looks like a ”ridge tent” (see Figure 2), so it is non regular but the
boundary conditions are very simple: 0 on each side of the rectangle. We apply our
SL scheme for the eikonal equation (22). Looking at the right picture of Figure 2, we
can see that the algorithm is accurate around the kinks and that there are no spurious
oscillations where the gradient is discontinuous. Similar results have been obtained
for other virtual and real images. A detailed presentation of these results as well as
a comparison with other numerical methods can be found in the survey [24].
Let us also mention that the same problem can be solved by applying optimiza-
tion methods based on the variational approach. The interested reader can find in
Horn and Brooks’ book [32] several results and references relating to the variational
approach. In this class of methods two basic ingredients must be chosen: the func-
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a) b) c)

Fig. 2 a) the original surface, b) its brightness function in the plane, c) the approximate surface.

tional which has to be optimized (in fact, minimized) and the minimization method.
The first difficulty encountered in the Shape From Shading problem is the choice
of unknowns. The natural unknown is of course height u as we have done before.
However, this is not the only choice since u appears in the image irradiance equa-
tion only through its first derivatives p = ∂u/∂x1 and q = ∂u/∂x2, which are two
non-independent functions. In fact, for u ∈C2 we know that

∂ p/∂x2 = ∂q/∂x1. (26)

The only technical difficulty with these unknowns is that p or q becomes infinite
at each point x belonging to an occluding boundary. This not a real trouble if no
point x in the reconstruction domain Ω is such that I(x) = 0. As equation (26) is a
hard constraint on p and q, the most natural functional associated with the irradiance
equation and (26) is

F1 (p,q,µ) =
∫

Ω

[r(p(x),q(x))− I(x)]2 dx

+
∫

Ω

µ(x)
[

∂ p
∂x2

(x)− ∂q
∂x1

(x)
]

dx,
(27)

where µ is a Lagrange multiplier and the function r is such that r(p(x),q(x)) =
R(n(x)). Note that F1 is defined on the unknowns p , q and µ . However Horn
and Brooks have shown that the three Euler equations associated with F1 can be
reduced, for u ∈C2, to the Euler equation associated with the following functional:

F2 (p,q) =
∫

Ω

[r (p,q)− I(x)]2 dx. (28)

The choice of p and q as unknown is due to the fact that the algorithms dealing
directly with u are very slow, this choice implies that at the end we will need also
another procedure to get back to u. Typically this is done integrating along paths.

As we said, in the previous model we have neglected the perspective deforma-
tions. A more realistic model has been studied to deal with this new problem. Let
us define our model problem adopting the same notation used in [17] (a different
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model with an attenuation term has been studied in [40]). The point (X0,Y0) is the
principal point of the image, d and d′ are respectively the distance of the objective
from the perspective plane (the film) and the distance of the objective from the (flat)
background, l and l′ = d′

d l are respectively the length of a segment in the perspective
plane (i.e. in the image) and the length of the real segment corresponding to it (see
Figure 3 and [17] for more details). The representation of the surface in terms of the

Fig. 3 Diagram of the optical lens and of the perspective transformation

(X ,Y ) coordinates of the points in the perspective plane is given by three parametric
equations

x1 = r(X ,Y ), x2 = s(X ,Y ), x3 = t(X ,Y ) (29)

where (see [17]) {
r(X ,Y ) = X−X0

d t(X ,Y )
s(X ,Y ) = Y−Y0

d t(X ,Y ).
(30)

The problem is then reduced to compute the third component t. This is the most
difficult task since t is the solution of the following eikonal type equation[

d
t(X ,Y )

]2

|Dt(X ,Y )|2 = I2
max

I′(X ,Y )2 −1 in Ω (31)

where Ω is the internal region bounded by the silhouette of the object (∂Ω will
denote its boundary) which is embedded in a rectangular domain Q,

t(X ,Y ) = t(X ,Y )+(X−X0,Y −Y0) ·Dt(X ,Y ), (32)

I′(X ,Y ) =
I(X ,Y )

cos4α(X ,Y )
, (33)

cos4(α(X ,Y )) =
d4

((X−X0)2 +(Y −Y0)2 +d2)2 , (34)
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and Imax is a constant depending on parameters of the problem. The set Q\Ω is the
background.
Defining

f (X ,Y ) :=
1
d2

(
I2
max

I′(X ,Y )2 −1
)

(35)

we can write (31) as

|Dt(X ,Y )|=
√

f (X ,Y )
∣∣∣t̄(X ,Y )

∣∣∣. (36)

We want to write (36) in a fixed point form and construct an approximation scheme
for this equation. To this end it is important to note that t̄ has a sign. In fact, the
exterior normal to the original surface in the point P is given by

n̂(P) = N(P)/|N(P)| (37)

where

N(P)≡ (
∂ t
∂X

(X ,Y ),
∂ t
∂Y

(X ,Y ),−t̄(X ,Y )) (38)

and since −t̄ must be positive (according to the orientation of the x3 axis in Figure
3), t̄ must be negative. This implies that (36) is in fact

|Dt(X ,Y )|+
√

f (X ,Y )(t(X ,Y )+ (39)
+(X−X0,Y −Y0) ·Dt(X ,Y )) = 0

which can be written in short as

H((X ,Y ), t,Dt) = 0 in Ω (40)

where the Hamiltonian H represents the left-hand side of (39).
Let us consider equation (39) complemented with the Dirichlet boundary condition

t = g(X ,Y ) on ∂Ω , where −d′ ≤ g≤ 0 (41)

The usual semi-Lagrangian scheme for (39)-(41) is

t(X ,Y ) = F [t](X ,Y ) in Ω (42)

where

t(X ,Y )=F [t](X ,Y )≡ 1
1+δ

inf
a∈B(0,1)

{
t
(
(X ,Y )+δ

(
−a√

f
− (X ,Y )

))}
on Ω .

(43)
and B(0,1) is the unit ball in R2. This leads to the fully discrete semi-Lagrangian
scheme
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t(x j)=F [t](x j) :=
1

1+δ
inf

a∈B(0,1)

{
Π [t]

(
x j +δ

(
−a√
f (x j)

− x j

))}
, for x j ∈Ω∩G∆x

(44)
where x j = (X j1 ,Yj2) is a node of our grid.
In the following test we start from a real photograph where the effect of per-
spective is visible. The surface is a sheet of paper with the shape of a roof tile.
For this image the parameter values are: l = 6.91mm, d = 5.8mm, l′ = 200mm,
d′ = l′

l d = 167.87mm, ∆x = 0.05mm. We note that we performed a light correction
in the preprocessing step, so we can assume Imax = 1 during computation. Figure 4

Fig. 4 Photograph of one page, 128 x 128 pixels (left) and reconstructed surface with Dirichlet
boundary conditions (right)

shows the photograph (128×128 pixels) and the surface reconstructed using Dirich-
let boundary conditions (t = 0 on the left and right sides of the boundary and t3 = g
on the top and the bottom). We can see that the solution is quite good considering the
fact that light source (flash camera) is not far from the object and that direction of
light source is not perfectly vertical as the mathematical model would have required.

4 Nonlinear filtering via MCM

The aim of this section is to present two classical methods based on Mean Curvature
Motion for image restoration. These models can be written in the following general
form: 

ut(x, t) = div
(

Du(x,t)
|Du(x,t)|

)β

|Du(x, t)| (x, t) ∈Ω × (0,T ],

u(x,0) = I0(x), x ∈Ω .
∂u(x,t)

∂η
= 0 (x, t) ∈ ∂Ω × (0,T ].

(45)
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where η(x) is the normal direction at the point x. We will consider the case β = 1
corresponding to classical Mean Curvature Motion (MCM) and the case β = 1/3
corresponding to Affine Morphological Scale Space (AMSS). Here {u(x, t)}t≥0 rep-
resents a family of successive restored version of the initial noisy image I0. The vari-
able t is called the scale variable and, as t increase, we expect u(x, t) be a smoothed
image, in which the noise has been removed. The model is able to preserve signif-
icant features, like edges and corners, which are typically lost when using linear
PDE-methods based on the heat equation where the smooth effect is isotropic. In
curvature-related diffusion, the smoothing effect is anisotropic, i.e. the diffusion de-
pends on the image and is not constant in all directions. The model with β = 1
corresponds to ”pure” anisotropic diffusion and it was introduced for image pro-
cessing by Alvarez, Lions and Morel in [2]. The term div

(
Du(x,t)
|Du(x,t)|

)
|Du(x, t)| rep-

resents a degenerate diffusion term, which diffuses in the direction orthogonal to
the gradient Du and does not diffuse in the direction of Du. In fact, denoting by

σ(Du) =
(

Du
|Du|

)⊥
the versor orthogonal to Du, a formulation of the previous equa-

tion with respect to σ(Du) would be:

ut = σ(Du)>D2uσ(Du),

where D2u is the Hessian matrix with respect to x. This equation admits a unique
continuous viscosity solution, if u(x,0) is bounded uniformly continuous, see [26],[15].
In the paper [1] by Alvarez et al., a connection between scale space analysis and
PDEs is proved, the authors also show that the MCM operator satisfies mostly all
the relevant properties in multi-scale analysis as monotonicity, invariance under grey
scale change, translation invariance. Moreover, they prove that the only operator
satisfying all these property together with affine invariance is the model represented
by (45) with β = 1/3. Affine invariance requires the solution of the equation to
be invariant with respect any affine transformation: let {Tt}t≥0 represents a fam-
ily of operator which applied to the original image yields a sequence of images
u(x, t) = Tt(u), solution of (45), then the affine invariance is stated as follows:

Tt(u◦φ) = Tt·det|Jφ |u◦φ

for any affine map φ , where Jφ represents the Jacobian of φ , which is an invertible
matrix. Such property guarantees that shapes are better maintained during smooth-
ing, a classical example is the evolution of an ellipse. It is well known that under
MCM any convex curve will propagate to a circle and then collapse to point, instead
by the AMSS model the ellipse will collapse to a point preserving the shape, we
show the evolution of an ellipse by MCM and AMSS in Fig.5. This property makes
the AMSS model particularly attractive for image analysis. In next section, we will
show a semi-Lagrangian approximation of both equations with an application to
image de-noising.
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Fig. 5 Shrinking of an ellipse by MCM (left) and AMSS (right)

4.1 SL approximation for the nonlinear filtering problem via MCM

We present a semi-Lagrangian (SL) scheme to approximate equation (45) for MCM,
case β = 1, and AMSS, case β = 1/3. For the first equation, we use the scheme
described in [10], where a fully explicit scheme is obtained. We denote by un

j the
numerical approximation of u(x, t) at the node (x j, tn) ∈ G∆x,∆ t , by Dn

j the central
finite difference approximation of the space gradient, by D( j) = {( j1 +1, j2),( j1−
1, j2),( j1, j2 +1),( j1, j2−1)} and we define σn

j = σ(Dn
j).

Now, we can write the SL scheme for MCM :

un+1
j ≡


1
2

(
Π [un](x j +σ

n
j

√
∆ t)+Π [un](x j−σ

n
j

√
∆ t)
)

if |Dn
j |>C∆xs

1
4 ∑

i∈D( j)
un

i if |Dn
j | ≤C∆xs.

(46)

Here, C and s are positive constant. Let us notice that the vector σn
j = σ(Dn

j) is
defined only where the discrete gradient Dn

j is not vanishing. When the gradient
is zero the MCM is consistent with the heat equation, see [18] and [10]. Then,
in the case |Dn

j | ≤ C∆xs, the numerical solution is obtained as an average of the
neighboring values, so that on these points the scheme results to be consistent with
the following heat equation

ut =
∆x2

4∆ t
∆u.
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We show an application of the scheme to filter noisy image. The noisy image are
obtained adding gaussian white noise of mean 0 and variance (ν/255)2 to a given
clean image, Iex. In all the tests we have chosen a cubic interpolation, and in order
to deal with non-smooth data we have regularized the gradient using G∗Du, where
G is a smoothing kernel. Moreover we have used the following approximation (G∗
Du)(x j, tn) ' 1

4 ∑i∈D( j) Dn
i . The errors are measured by a relative L1 discrete norm

‖ · ‖1,r, defined as follows:

‖Iex(·)−uN
· ‖1,r :=

∑x j∈G∆x
|Iex(x j)−uN

j |
∑x j∈G∆x

|Iex(x j)|
.

In Fig.6 and Fig.7 we show the clean image, the noisy image respectively with
ν = 12 and ν = 25 , the restored image obtained setting the parameters as following:
C = 0.02,s = 1,∆x = 1,∆ t = 0.25,N = 5.
In Fig.8 we show the relative L1 discrete errors evolution with respect to t. We see
that in few iterations we reached the minimization of the L1 errors.

Fig. 6 Original, noisy (ν = 12) and filtered images by MCM

To describe the SL scheme for the AMSS model, we first need to remind that the
equation (45) in this case can be rewritten as following:

ut =
(

σ̂(Du)>D2uσ̂(Du)
)1/3

,
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Fig. 7 Original, noisy (ν = 25) and filtered images by MCM

Fig. 8 L1 errors (y−axis) and time iteration (x−axis) for MCM model applied to a noisy images
with ν = 11 (left) and ν = 25 (right)

.

where σ̂(Du) = (Du)⊥, see for instance [31]. Then we introduce an extra parameter
ρ , we define σ̂n

j := σ̂(Dn
j) and we take a directional second finite difference :

σ̂(Du)>D2uσ̂(Du)(x j, tn)'
u(x j +ρσ̂n

j , tn)+u(x j−ρσ̂n
j , tn)−2un

j

ρ2 . (47)

Finally the SL scheme is written as following:
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un+1
j ≡


wn+1

j if |Dn
j |>C∆x

1
4 ∑

i∈D( j)
wn+1

i if |Dn
j | ≤C∆x

where

wn+1
i ≡


un

i +∆ t
(

Π [un](xi+ρσ̂n
i )+Π [un](xi−ρσ̂n

i )−2un
i

2ρ2

)1/3
if |Dn

i |>C∆x

un
i if |Dn

i | ≤C∆x.

Such scheme as been proposed in [11], where a convergence result for its monotonic
version is shown.
Let us notice that in this case the vector σ̂ is always defined, anyhow we need to
consider differently the case σ̂ = 0. In fact, if we would use the approximation (47)
on the points where σ̂ = 0, no diffusion would happen. On these points, we extend
the solution by continuity: we take an average of the numerical solution, computed
at the previous step when σ̂ is small, computed using (47) when σ̂ is big.
As for the previous model, we have chosen a cubic interpolation and regularized the
gradient.
In Fig.9, we show respectively the clean image, the noisy image with ν = 12 and the
restored image obtained setting the parameters as following: C = 0.02,s = 1,∆x =
1,∆ t = 0.2,ρ = (∆ t)1/6,N = 10.

In Fig.10, we show respectively the clean image, the noisy image with σ = 25,
the restored image obtained setting the parameters as following: C = 0.02,s =
1,∆x = 1,∆ t = 0.25,ρ = (∆ t)1/6,N = 10.

In Fig. 11 we show the relative L1 discrete errors evolution with respect to t. We
see that in few iterations the minimum error is reached.

To conclude this section, we observe that the SL approximation allows to obtain
accurate scheme even for second order non linear degenerate equation. Such approx-
imations have the advantage to be fully explicit and at the same time allows large
time steps. These schemes show to be robust enough when applied to not smooth
data, as noisy images.

5 Segmentation via the LS method

The segmentation problem in computer vision, as formulated by Mumford and Shah
[37], can be definited in the following way: given an observed image I0 : Ω → [0,1],
find a decomposition of open sets Ω =

⋃
i Ωi∪C with C =

⋃
i ∂Ωi, such that I0 varies

smoothly within each Ωi and rapidly or discontinuously across the boundaries of Ωi.
We denote by |C| the length of curves which belong to C.



18 Elisabetta Carlini, Maurizio Falcone and Adriano Festa

Fig. 9 Original, noisy (σ = 12) and filtered images by AMSS

A classical way to solve this problem is solving the following minimization prob-
lem:

inf
I,C

FMS(I,C) (48)

where
FMS(I,C) = λ

∫
Ω

(I− I0)
2dx+ν

∫
Ω\C
|DI|2dx+µ|C| (49)

and µ,ν are fixed parameters of weight for the different terms of the functional. For
a minimum (I∗,C∗), I∗ is an optimal piecewise smooth approximation of the initial
image I0, and C∗ approximates the edges of I0. I∗ will be smooth on Ω \C and will
have its discontinuity bounds on C∗.

Theoretical results of existence of minimizers for this problem can be found in
Mumford and Shah [37], Morel and Solimini [36] and De Giorgi et al. [23].

A reduced case can be obtained by restricting the segmentation image I to piece-
wise constant functions, i.e. said ci = mean(I0) in Ωi then I ≡ ci inside each Ωi. In
this event, for the special case i = {0,1} (that is the classical case of segmentation)
the problem (48) becomes minimizing

EMS(c0,c1,C) = λ

∫
Ω0

(I0− c0)
2dx+λ

∫
Ω1

(I0− c1)
2dx+µ|C|. (50)
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Fig. 10 Original, noisy (σ = 25) and filtered images by AMSS

Fig. 11 Errors for MCM model for noisy images (left σ = 1, right σ = 25)
.

We want now to use LS methods to solve this problem. LS methods are a very useful
tool for computing evolving contours since they accommodate topological changes
and allow to compute on a simple structured grid. For LS methods the curve C
is defined as the zero-level set of a sufficiently regular function φ called level set
function, i.e. φ(x)< 0 for x ∈Ω0 and φ(x)> 0 for x ∈Ω1.

In this formulation, denoting by H(φ) the usual Heaveside function, (50) be-
comes (see [13])
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EVC(c0,c1,φ) = λ
∫

Ω
(I0− c0)

2H(φ)dx+λ
∫

Ω
(I0− c1)

2(1−H(φ))dx+ (51)
+µ

∫
Ω
|DH(φ)|dx.

Considering Hε and δε two C1 regular approximations of the Heaviside function H
and of the delta function so that H ′ε = δε , we can write the Euler-Lagrange equation
corresponding to the energy EVC obtaining

∂φ

∂ t
=δε(φ)

[
µdiv

(
Dφ

|Dφ |

)
−λ (I0− c0)

2 +λ (I0− c1)
2
]

where c0 =

∫
Ω

I(x)H(φ)dx∫
Ω

H(φ)dx
, c1 =

∫
Ω

I(x)(1−H(φ))dx∫
Ω
(1−H(φ))dx

.

(52)

This is a system of equation converging to a steady solution witch is a minimizer of
the functional (50).

A standard rescaling can be made, as in Zaho et al. [43], by replacing δ (φ) by
|Dφ |. This time rescaling does not affect the steady state solution, but helps remov-
ing stiffness near the zero level sets of φ . Finally, we get the following nonlinear
evolution equation:

∂φ

∂ t
= |Dφ |

[
µdiv

(
Dφ

|Dφ |

)
−λ (I0− c0)

2 +λ (I0− c1)
2
]

(53)

witch is solved for t→ ∞ by the solution of the segmentation problem.

5.1 SL scheme for segmentation via the LS method

In this section, we describe a SL approximation for equation (53). This equation
has a first-order and a second-order term, which we approximate using SL schemes
introduced in previous sections. We call c(x) the speed of propagation of the first-
order term,

c(x) =−λ (I0− c0)
2 +λ (I0− c1)

2, (54)

and using (20) we obtain

∂φ

∂ t
= µdiv

(
Dφ

|Dφ |

)
|Dφ |+ c(x) max

a∈B(0,1)
{a ·Dφ} . (55)

We have to take care of the change of sign in c(x), this fact will make a sign
change also in our scheme. We also want that the velocity c(x) contributes to semi-
Lagrangian approximation. Then we can rewrite (55) as

∂φ

∂ t
=

 µdiv
(

Dφ

|Dφ |

)
|Dφ |+maxa∈B(0,1) {c(x)a ·Dφ} c(x)≥ 0

µdiv
(

Dφ

|Dφ |

)
|Dφ |−maxa∈B(0,1) {−c(x)a ·Dφ} c(x)< 0.

(56)



A brief survey on semi-Lagrangian schemes for Image Processing 21

Next, we define φ n
j = φ(x j, tn) where (x j, tn) ∈ G∆x,∆ t .

Using the approaches, introduced in previous sections for first order term and
second order term, we arrive to the following fully discrete SL scheme:

φ
n+1
j = µ

{
1
2

Π [φ n] (x j +σ
n
j

√
∆ t)+

1
2

Π [φ n] (x j−σ
n
j

√
∆ t)
}

+ sign(c(x j))

{
min

a∈B(0,1)

{
Π [φ j](x j +ac(x j)∆ t)

}
−φ

n
j

}
. (57)

We used this scheme to segment a variety of images, the results are shown in Figure
12, 13, 14.

The most interesting feature of this approach is that the method is very rapid.
While in classical finite difference schemes the information runs just one pixel for
iteration, in this case we take information from a larger set. In particular to com-
pute the value on the grid point x j we use all the values on the grid nodes that are
contained in a ball centered in x j with radius c(x j). This is the reason of the rapid
convergence of the scheme. In our tests we find the correct segmentation of the im-
age always in 3 or less iterations. We note also that speeding up the convergence we
avoid all the over-smoothing problems of the level set function, so we have not to
re-initializate the level set function as in the classical scheme.

6 The motion segmentation problem

Optical flow is the apparent motion in an image sequence, this problem belongs to
the more general problem of motion estimation. Motion estimation and segmenta-
tion are strongly related topics that can increase the performances from each other.
In particular segmentation can help us to solve the classical ambiguity near motion
boundaries.

Both topics are traditional in computer vision. Various approaches to optical flow
computation have been suggested in [5], especially variational techniques based on
modifications of the method of Horn and Schunk [33] have yielded very convincing
results.

Also in segmentation, variational techniques perform well. As we showed in the
previous section, segmentation is obtained minimizing a functional Mumford and
Shah-like, see [35] and [14]. In recent years the functional optimization is computed
using LS methods [39].

In [3] and in [7], the authors propose to compute Optical Flow coupling estima-
tors for Optical flow and segmentation problem in a Mumford-Shah-like functional.
Due to the presence of unspecified discontinuities in the integration domain, mini-
mization of Mumford and Shah type functionals is difficult, we solve it using level
set techniques as specified in the following.

We will use the studied semi-Lagrangian schemes for the Mean Curvature Mo-
tion in this situation, to compute the front propagation of level set function. Later,
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Fig. 12 Segmentation: µ = 0.1, λ = 104, two iterations.

we compare the results for this application, in term of accuracy and speed. The vari-
ational model which we use, is based on the optical flow functional in [8] and the
segmentation model presented in [14].

Given two images I0(x), I1(x) : Ω → R, we have to find, at each point x ∈Ω the
optical flow vector w(x) : R2 → R2 that describes the shift of the pixel at x on the
image I0 to the new location x+w on the image I1. Let us assume the following
classical constraints: I0(x+w) = I1(x) this is grey level constancy. It means that a
pixel does not change its image luminance from an image to the other one. The next
principle is gradient constancy that contains the assumption that also illumination
changes follow the displacement field. So, our term of consistency with the data is

fo f (w) = k|I0(x+w)− I1(x)|2 + γ|DI0(x+w)−DI1(x)|2. (58)
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Fig. 13 Segmentation: µ = 1, λ = 0.3∗104, two iterations.

The minimization of an optical flow functional with only the image constancy as-
sumptions is ill-posed, to overcome this problem, a smoothness term regularizing
the flow field is considered. The typical smoothness term is

so f (w) = (|Dw|2). (59)

Using this term, nevertheless, we introduce regularization of the field and the known
ambiguities along the discontinuities. For this reason, we place the smoothness term
in a Mumford-Shah-like functional that provide to add regularization only in the
regions of regularity of the functional.

Finally, called Γ the discontinuity set of the optical field, and |Γ | the length of
the curve, we want to minimize the following functional
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Fig. 14 Segmentation: µ = 1, λ = 0.3∗104, two iterations.

E(w,Γ ) =
∫

Ω

(
k|I0(x+w)− I1(x)|2 + γ|DI0(x+w)−DI1(x)|2

)
dx

+µ

∫
Ω\Γ

(|Dw|2)dx+ν |Γ |. (60)

This energy functional follows the principle of motion competition proposed for ex-
ample in [20] and in [3], that was inspired by the work on segmentation by [42].
This energy drives the interface of discontinuity and, simultaneously, makes an es-
timation of the optic flow in the different regions of smoothness.

In the optimization problem related to (60), the optic flow, the number or regions
separated by Γ and the position of the curve Γ are all unknown, then minimization
can be hard. Since we are interested in the approximation of interface Γ , we can
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consider a special case. For more details and descriptions of general situations we
refer to [7].

In the next section we will consider the following simpler case. The field motion
has an interface of discontinuity that divides the domain Ω in only two regions;
inside these regions the motion field is constant.

6.1 SL scheme for the motion segmentation problem

Dealing the functional (60) in a similar way as in segmentation, we get the following
evolutive equation. The interface of discontinuity of the motion field Γ is the 0-level
set of φ for t→∞. We discretize this equation with a fully discrete semi-Lagrangian
scheme. We use the following numerical scheme:

φ
n+1
j = ν

{
1
2

Π [φ n] (x j +σ
n
j

√
∆ t)+

1
2

Π [φ n] (x j−σ
n
j

√
∆ t)
}

+ sign(c(x j))

{
min

a∈B(0,1)

{
Π [φ j](x j +ac(x j)∆ t)

}
−φ

n
j

}
, (61)

where the first-order velocity term c(x j) is, said w+, w− the constant values of w
inside and outside Γ ,

c(x j) = k
[

fo f (w+
j )− fo f (w−j )

]
−µ

[
so f (w+

j )− so f (w−j )
]
. (62)

We used this scheme for two simple tests obtaining the results shown in Figure 15,
16.
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4. G. Barles, Solutions de viscositè des equations d’Hamilton–Jacobi, Springer–Verlag, 1998.
5. J.L.Barron, D.J.Fleet, S.S.Beauchemin, Performance of optical flow techniques.

Int.J.Computer Vision, 12 (1996), 75-104.
6. M. Breuss, E. Cristiani, J.-D. Durou, M. Falcone, O. Vogel, Numerical algorithms for Per-

spective Shape from Shading, Kybernetika, vol. 46 (2010), 207-225.
7. T. Brox, A. Bruhn, J. Weickert, Variational Segmentation with Level Sets,Computer Vision-

ECCV, (2006), 471-483.
8. T.Brox, A. Bruhn, N. Papenberg and J. Weickert, High accuracy optical flow estimation based

on a theory for warping, Computer vision Proc. of ECCV, (2004), 25-36.



26 Elisabetta Carlini, Maurizio Falcone and Adriano Festa

Fig. 15 Motion segmentation: µ = 0.4 k = 0.5∗105 ν = 2 γ = 0.2 five iterations.

9. F. Camilli, M. Falcone, An approximation scheme for the maximal solution of the shape-from-
shading model, Proceedings ICIP 96 International Conference on Image Processing vol. I,
IEEE Inc., 1996, 49-52

10. E. Carlini, M. Falcone, R. Ferretti, Convergence of a large time-step scheme for mean curva-
ture motion ,Interfaces and free boundaries, 12 (2010), 409-441.

11. E. Carlini, R. Ferretti, A semi-Lagrangian approximation for the AMSS model of image pro-
cessing, submitted to Apnum.

12. E. Carlini, R. Ferretti, G. Russo, A weighted essentialy non oscillatory, large time-step scheme
for Hamilton Jacobi equations, SIAM J. Sci. Comp., Vol. 27, No.3 (2005),pp. 1071–1091.

13. T. Chan, B. Sandberg, L. Vese, Active contours without edges for vector-valued images, Jour-
nal of Visual Communication and Image Representation, 11 (2):130-141, 2000.

14. T. Chan, L. Vese,Active contours without edges, IEEE Transactions on Image Processing,
10(2) (2001), 266-277.

15. Y. G. Chen, Y. Giga, S. Goto, Uniqueness and existence of viscosity solutions of generalized
mean curvature flow equation J. Diff. Geom, 33 (1991), 749-786.



A brief survey on semi-Lagrangian schemes for Image Processing 27

Fig. 16 Motion segmentation: µ = 0.4 κ = 0.5∗105 ν = 2 γ = 0.2 four iterations.

16. R. Courant, E. Isaacson, M. Rees, On the solution of nonlinear hyperbolic differential equa-
tions by finite differences, Comm. Pure Appl. Math., 5 (1952), 243–255.

17. F. Courteille, A. Crouzil, J.D. Durou, P. Gurdjos, Towards shape from shading under real-
istic photographic conditions, Proceedings of the 17th International Conference on Pattern
Recognition - ICPR 2004, vol.2, Cambridge, 277-280.

18. M.G. Crandall, H. Ishii, P.L. Lions, User’s guide to viscosity solutions of second order partial
differential equations Bull. Amer. Math. Soc., 27 (1992), 1-67.

19. M.G. Crandall, P.L. Lions, Two approximations of solutions of Hamilton–Jacobi equations,
Math. Comp., 43 (1984), 1–19.

20. D. Cremers, S. Soatto,Motion competition: a variational framework for piecewise parametric
motion segmentation, Int. J. of Comp. Vision., 63 (2005), 249-265.

21. E. Cristiani, M. Falcone,Fast semi-Lagrangian schemes for the eikonal equation and applica-
tions, SIAM J. Num. Anal., vol. 45, n. 5 (2007), 1979-2011.

22. E. Cristiani, M. Falcone, A. Seghini, Numerical Solution of the Shape-from-Shading
problem, Proceedings of Science POS (CSTNA2005) 008,1-17, Electronic Journal site



28 Elisabetta Carlini, Maurizio Falcone and Adriano Festa

http://pos.sissa.it/
23. E. De Giorgi, New functionals in calculus of variations, Nonsmooth Optimization and Related

Topics, Proc. of the Fourth Course of the International School of Mathematics (Erice, 1988).
24. J.D. Durou, M. Falcone, M. Sagona, Numerical Methods for Shape from Shading: a new sur-

vey with benchmarks, Computer Vision and Image Understanding, Elsevier, 109(2008), 22-43.
25. L.C. Evans, Partial Differential Equations, AMS, 2010.
26. L.C. Evans, J. Spruck, Motion of level sets by mean curvature, I.J. Diff. Geom, 33 (1991),

635-681.
27. M. Falcone, The minimum time problem and its applications to front propagation, in A. Vis-

intin e G. Buttazzo (eds) , ”Motion by mean curvature and related topics”, De Gruyter Verlag,
Berlino, 1994

28. M. Falcone, R. Ferretti Convergence analysis for a class of high-order semi-Lagrangian ad-
vection schemes, SIAM J. Numerical Analysis 35 (1998), no. 3, 909–940.

29. M. Falcone, R. Ferretti, Semi-Lagrangian Approximation Schemes for Linear and Hamilton-
Jacobi Equations, SIAM, in preparation.

30. M. Falcone, M. Sagona, A. Seghini, A global algorithm for the Shape–from–Shading problem
with black shadows, in F. Brezzi, A. Buffa, S. Corsaro, A. Murli (eds), ”Numerical Mathemat-
ics and Advanced Applications- ENUMATH 2001”, Springer-Verlag, 2003, 503-512.

31. F. Guichard , J.M. Morel, Image Analysis and P.D.E.s ,IPAM GBM Tutorial (2001)
32. Horn, B. K. P. and Brooks, M. J. (eds.), Shape from Shading, MIT Press, 1989.
33. B. Horn, B. Schunck. Determinig optical flow, Artificial Intelligence, 17 (1981), 185-203.
34. P.L. Lions, E. Rouy, A. Tourin, A viscosity solution approach to Shape from Shading, Nu-

merische Mathematik, 64 (1993), 323-353.
35. D. Mumford, J. Shah, Boundary detection by minimizing functional,. Proc.IEEE Computer

Society Conference on Computer Visionand Pattern Recognition, (1985), 22-26.
36. J. M. Morel, S. Solimini, Segmentation of Images by Variational Methods: A Constructive

Approach, Rev. Mat. Univ. Compl. de Madrid, (1988), vol. 1, pp. 169-182.
37. D. Mumford, J. Shah, Optimal Approximations by Piecewise Smooth Functions and Associ-

ated Variational Problems, Comm. on Pure and Appl. Math. Vol. XLII (1989) 577-685
38. S. J. Osher, R. P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces,Applied Mathe-

matical Sciences, 153, Springer- Verlag, New-York, 2003.
39. S. J. Osher, J. A. Sethian.Front propagating with curvature-dependent speed: Algorithms

based on Hamilton-Jacobi formulation. J. of Comp. Physics, 79 (1988), 12-49.
40. E. Prados, O. Faugeras, Perspective Shape-from-Shading and viscosity solutions, IEEE, Pro-

ceedings of ICCV’03, 2003, 826-831.
41. J. A. Sethian, Level Set Methods and Fast Marching Methods Evolving Interfaces in Com-

putational Geometry, Fluid Mechanics, Computer Vision, and Materials Science Cambridge
University Press, 1999, Cambridge Monograph on Applied and Computational Mathematics.

42. L. Vese, T. Chan, A multiphase level set framework for image segmentation using the Mumford
and Shah model, Int. J. of Comp. Vision., 50 (2002), 271-293.

43. H. Zhao, T. Chan, B. Merriman, S. J. Osher, A Variational Level Set Approach to Multiphase
Motion, J. of Comp. Physics, 127, (1996) 179-195.


