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In this paper we study approximation of Hamilton–Jacobi equations defined on a network.
We introduce an appropriate notion of viscosity solution on networks which satisfies
existence, uniqueness and stability properties. Then we define an approximation scheme
of semi-Lagrangian type by discretizing in time the representation formula for the solution
of Hamilton–Jacobi equations and we prove that the discrete problem admits a unique
solution. Moreover we prove that the solution of the approximation scheme converges to
the solution of the continuous problem uniformly on the network.
In the second part of the paper we study a fully discrete scheme obtained via a finite
elements discretization of the semi-discrete problem. Also for fully discrete scheme we
prove the well posedness and the convergence to the viscosity solution of the Hamilton–
Jacobi equation. We also discuss some issues concerning the implementation of the
algorithm and we present some numerical examples.

© 2013 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

There is an increasing interest in the study of linear and nonlinear PDEs defined on networks since they naturally arise in
several applications (internet, vehicular traffic, social networks, email exchange, disease transmission, etc.). While a theory of
linear PDEs on networks is fairly complete (see [10,11]), the study of nonlinear problems is very recent [6] and, concerning
Hamilton–Jacobi equations and control problems on networks, is still at the beginning (see [1,7,12]).

It is well known that Hamilton–Jacobi equations in general do not admit regular solutions and the correct notion of weak
solution is the viscosity solution one. Hence all the three papers concerning Hamilton–Jacobi equations aim to extend the
concept of viscosity solution to the case of networks and, in particular, to find the correct transition condition at the internal
vertices. But, since the papers are motivated by different model problems and therefore they make different assumptions
on the Hamiltonian at the vertices, the resulting definitions of viscosity solution are quite different, even if all of them give
existence and uniqueness of the solution.

The definition of viscosity solution introduced in [12] satisfies a stability property with respect to the uniform conver-
gence. In this paper, we take advantage of this property to prove the convergence of a numerical scheme for Hamilton–Jacobi
equations on a network. For the sake of simplicity we consider a Hamiltonian of eikonal type, i.e. H(x, p) = |p| − f (x), with
a Dirichlet boundary condition, but the results can be extended to a more general class of Hamiltonians and also to other
boundary conditions.
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Following [4], we introduce a scheme of semi-Lagrangian type by discretizing with respect to the time the representation
formula for the solution of the Dirichlet problem. We prove the well posedness of the discrete problem introducing an
appropriate discrete transition condition and the convergence of the scheme to the solution of the continuous problem. It is
worth noticing that the proof can be adapted to prove convergence of other approximation schemes, for example based on
a finite difference approximation.

In the second part of the paper we study a fully discrete scheme which gives a finite-dimensional problem. The scheme
is obtained via a finite elements discretization of semi-discrete problem. Also for this step of the discretization procedure
we prove the well posedness of the discrete problem and the convergence of the scheme to the unique solution of the
continuous problem. It is important to observe that the scheme not only computes the solution of the eikonal equations,
but it also produces an approximation of the shortest paths to the boundary.

We also discuss some issues concerning the implementation of the algorithm and we present some numerical examples.

2. Assumptions and preliminary results

We give the definition of graph suitable for our problem. We will also use the equivalent terminology of topological
network (see [9]).

Definition 2.1. Let V = {vi, i ∈ I} be a finite collection of different points in RN and let {π j, j ∈ J } be a finite collection of
differentiable, non-self-intersecting curves in RN given by

π j : [0, l j] → RN , l j > 0, j ∈ J .

Set e j := π j((0, l j)), ē j := π j([0, l j]), and E := {e j: j ∈ J }. Furthermore assume that

(i) π j(0), π j(l j) ∈ V for all j ∈ J ,
(ii) #(ē j ∩ V ) = 2 for all j ∈ J ,

(iii) ē j ∩ ēk ⊂ V , and #(ē j ∩ ēk) � 1 for all j,k ∈ J , j �= k,
(iv) for all v, w ∈ V there is a path with end-points v and w (i.e. a sequence of edges {e j}N

j=1 such that #(ē j ∩ ē j+1) = 1
and v ∈ ē1, w ∈ ēN ).

Then Γ̄ := ⋃
j∈ J ē j ⊂ RN is called a (finite) topological network in RN .

For i ∈ I we set Inci := { j ∈ J : e j is incident to vi}. Given a nonempty set I B ⊂ I , we define ∂Γ := {vi, i ∈ I B} (we always
assume i ∈ I B whenever #(Inci) = 1 for some i ∈ I). We set IT := I \ I B and Γ := Γ̄ \ ∂Γ .

For any function u : Γ̄ →R and each j ∈ J we denote by u j the restriction of u to ē j , i.e.

u j := u ◦ π j : [0, l j] → R.

We say that u is continuous in Γ̄ and write u ∈ C(Γ̄ ) if u is continuous with respect to the subspace topology of Γ̄ . This
means that u j ∈ C([0, l j]) for any j ∈ J and

u j(π−1
j (vi)

) = uk(π−1
k (vi)

)
for any i ∈ I, j,k ∈ Inci .

We define differentiation along an edge e j by

∂ ju(x) := ∂ ju
j(π−1

j (x)
) = ∂

∂x
u j(π−1

j (x)
)
, for x ∈ e j,

and at a vertex vi by

∂ ju(x) := ∂ ju
j(π−1

j (x)
) = ∂

∂x
u j(π−1

j (x)
)

for x = vi, j ∈ Inci .

Observe that the parametrization of the arcs e j induces an orientation on the edges, which can be expressed by the signed
incidence matrix A = {aij}i, j∈ J with

aij :=
⎧⎨⎩ 1 if vi ∈ ē j and π j(0) = vi,

−1 if vi ∈ ē j and π j(l j) = vi,

0 otherwise.

(2.1)
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Definition 2.2. Let ϕ ∈ C(Γ ).

(i) Let x ∈ e j , j ∈ J . We say that ϕ is differentiable at x, if ϕ j is differentiable at π−1
j (x).

(ii) Let x = vi , i ∈ IT , j,k ∈ Inci , j �= k. We say that ϕ is ( j,k)-differentiable at x, if

aij∂ jϕ j
(
π−1

j (x)
) + aik∂kϕk

(
π−1

k (x)
) = 0, (2.2)

where (aij) is as in (2.1).

Remark 2.1. Condition (2.2) demands that the derivatives in the direction of the incident edges j and k at the vertex vi
coincide, taking into account the orientation of the edges.

We consider the eikonal equation

|∂u| − f (x) = 0, x ∈ Γ, (2.3)

where f ∈ C0(Γ̄ ), i.e. f (x) = f j(π−1
j (x)) for x ∈ ē j , f j ∈ C0([0, l j]), and f j(π−1

j (vi)) = f k(π−1
k (vi)) for any i ∈ I , j,k ∈ Inci .

Moreover we assume that

f (x) � η > 0, x ∈ Γ. (2.4)

Definition 2.3. A function u ∈ USC(Γ̄ ) is called a (viscosity) subsolution of (2.3) in Γ if the following holds:

(i) For any x ∈ e j , j ∈ J , and for any ϕ ∈ C(Γ ) which is differentiable at x and for which u − ϕ attains a local maximum
at x, we have∣∣∂ jϕ(x)

∣∣ − f (x) := ∣∣∂ jϕ j
(
π−1

j (x)
)∣∣ − f j(π−1

j (x)
)
� 0.

(ii) For any x = vi , i ∈ IT , and for any ϕ which is ( j,k)-differentiable at x and for which u − ϕ attains a local maximum
at x, we have∣∣∂ jϕ(x)

∣∣ − f (x) � 0.

A function u ∈ LSC(Γ̄ ) is called a (viscosity) supersolution of (2.3) in Γ if the following holds:

(i) For any x ∈ e j , j ∈ J , and for any ϕ ∈ C(Γ ) which is differentiable at x and for which u − ϕ attains a local minimum
at x, we have∣∣∂ jϕ(x)

∣∣ − f (x) � 0.

(ii) For any x = vi , i ∈ IT , j ∈ Inci , there exists k ∈ Inci , k �= j (which we will call i-feasible for j at x) such that for any
ϕ ∈ C(Γ ) which is ( j,k)-differentiable at x and for which u − ϕ attains a local minimum at x, we have∣∣∂ jϕ(x)

∣∣ − f (x) � 0.

A continuous function u ∈ C(Γ ) is called a (viscosity) solution of (2.3) if it is both a viscosity subsolution and a viscosity
supersolution.

Remark 2.2. Let i ∈ IT and ϕ ∈ C(Γ ) be ( j,k)-differentiable at x = vi . Then∣∣∂ jϕ(x)
∣∣ − f (x) = ∣∣∂ jϕ j

(
π−1

j (x)
)∣∣ − f j(π−1

j (x)
)

= ∣∣±∂ jϕk
(
π−1

k (x)
)∣∣ − f k(π−1

k (x)
) = ∣∣∂kϕ(x)

∣∣ − f (x),

hence in the subsolution and supersolution condition at the vertices, it is indifferent to require the condition for j or for k.

We give a representation formula for the solution of (2.3) completed with the Dirichlet boundary condition

u(x) = g(x), x ∈ ∂Γ. (2.5)

We define a distance-like function S : Γ̄ × Γ̄ → [0,∞) by

S(x, y) := inf

{ t∫
0

f
(
γ (s)

)
ds: t > 0, γ ∈ Bt

x,y

}
,

where
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(i) γ : [0, t] → Γ is a piecewise differentiable path in the sense that there are t0 := 0 < t1 < · · · < tn+1 := t such that for
any m = 0, . . . ,n, we have γ ([tm, tm+1]) ⊂ ē jm for some jm ∈ J , π−1

jm
◦ γ ∈ C1(tm, tm+1), and

∣∣γ̇ (s)
∣∣ =

∣∣∣∣ d

ds

(
π−1

jm
◦ γ

)
(s)

∣∣∣∣ = 1;

(ii) Bt
x,y is the set of all such paths with γ (0) = x, γ (t) = y.

If f (x) ≡ 1, then S(x, y) coincides with the path distance d(x, y) on the graph, i.e. the distance given by the length of
shortest arc in Γ̄ connecting y to x. The following result is in the spirit of the corresponding results in RN in [3,5,8] (for
the proof, see [12, Proposition 6.1]).

Theorem 2.1. Let g : Γ̄ →R be a continuous function satisfying

g(x) − g(y) � S(y, x) for any x, y ∈ ∂Γ. (2.6)

Then the unique viscosity solution of (2.3)–(2.5) is given by

u(x) := min
{

g(y) + S(y, x): y ∈ ∂Γ
}
. (2.7)

Remark 2.3. It is worthwhile to observe that if supersolutions were defined similarly to subsolutions, then the supersolution
condition could not be satisfied by (2.7). Consider the network Γ = ⋃3

i=1 ei ⊂ R2, where e1 = {0} × [0,1/2], e2 = {0} ×
[−1,0], e3 = [0,1] × {0} and the equation |∂u| − 1 = 0 with zero boundary conditions at the vertices v1 = (0,1/2), v2 =
(0,−1), v3 = (1,0). Then the distance solution, see Theorem 2.1, is given by u(x) = inf{d(y, x): y ∈ ∂Γ } where d is the
path distance on the network. The restriction of u to e2 ∪ e3 has a local minimum at the vertex v0 = (0,0). Hence if ϕ is a
constant function, u −ϕ has a local minimum at v0 and therefore the supersolution condition is not satisfied for the couple
(e2, e3). Instead the arc e1 is v0-feasible; see the definition of supersolution, for both the arcs e2 and e3.

3. The approximation scheme

We consider an approximation scheme of semi-Lagrangian type for the problem (2.3)–(2.5).

3.1. Semi-discretization in time

Following the approach of [4] we construct an approximation scheme for Eq. (2.3) by discretizing the representation
formula (2.7). We fix a discretization step h > 0 and we define a function uh : Γ̄ → R by

uh(x) = inf
{
Fh

(
γ h) + g(y): γ h ∈ Bh

x,y, y ∈ ∂Γ
}
, (3.1)

where Fh(γ h) = ∑M
m=0 hf (γ h

m)|qm| and

(i) an admissible trajectory γ h = {γ h
m}M

m=1 ⊂ Γ is a finite number of points γ h
m = π jm (tm) ∈ Γ such that for any m =

0, . . . , M , the arc ̂γ h
mγ h

m+1 ⊂ ē jm for some jm ∈ J and |qm| := | tm+1−tm
h | � 1;

(ii) Bh
x,y is the set of all such paths with γ h

0 = x, γ h
M = y.

Remark 3.1. Given γ h ∈ Bh
x,y , we define a continuous path, still denoted by γ h , in Bx,y by setting γ h(s) = π jm (tm +

(s−mh)
h (tm+1 − tm)) for s ∈ [mh, (m + 1)h] if ̂γ h

mγ h
m+1 ⊂ ē jm . Then, recalling formula (2.7) we approximate

Mh∫
0

f
(
γ (s)

)∣∣γ̇ (s)
∣∣ds =

M∑
m=1

mh∫
(m−1)h

f
(
γ (s)

)|qm|ds ≈
M∑

m=1

hf
(
γ h

m

)|qm|,

which shows that (3.1) is an approximation of (2.7). In the continuous case it is always possible to assume by reparametriza-
tion that |γ̇ (s)| = 1. In the discrete one we consider instead velocities in the interval [−1,1], since otherwise near the
vertices the discrete dynamics can move only in one direction.

Let B(Γ ) be the space of the bounded functions on the network. We show that the function uh can be characterized as
the unique solution of the semi-discrete problem

uh(x) = S(h, x, uh), (3.2)
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where the scheme S : R+ × Γ̄ ×B(Γ ) → R is defined by

S(h, x,ϕ) = inf
q∈[−1,1]: xhq∈ē j

{
ϕ(xhq) + hf (x)|q|} if x = π j(t) ∈ e j, (3.3)

S(h, x,ϕ) = inf
k∈Inci

[
inf

q∈[−1,1]: xhq∈ēk

{
ϕ(xhq) + hf (x)|q|}] if x = vi, i ∈ IT , (3.4)

S(h, x,ϕ) = g(x) if x ∈ ∂Γ, (3.5)

where, for x = π j(t), we define xhq := π j(t − hq).

Proposition 3.1. Assume that

g(x) � inf
{
Fh(γ ) + g(y): γ ∈ Bh

x,y, y ∈ ∂Γ
}

for any x ∈ ∂Γ. (3.6)

Then uh is the unique solution of (3.2). Moreover uh is Lipschitz continuous uniformly in h, i.e.∣∣uh(x1) − uh(x2)
∣∣ � Cd(x1, x2) for any x1, x2 ∈ Γ̄ . (3.7)

Proof. Let u1, u2 be two bounded solutions of (3.2) and set wi(x) = 1 − e−ui(x) , for i = 1,2. Then wi satisfies

wi(x) = S̄(h, x, wi), (3.8)

where

S̄(h, x,ϕ) = inf
q∈[−1,1]: xhq∈ē j

{
e−hf (x)|q|ϕ(xhq) + 1 − e−hf (x)|q|} if x = π j(t) ∈ e j,

S̄(h, x,ϕ) = inf
k∈Inci

[
inf

q∈[−1,1]: xhq∈ēk

{
e−hf (x)|q|ϕ(xhq) + 1 − e−hf (x)|q|}] if x = vi, i ∈ IT ,

S̄(h, x,ϕ) = 1 − e−g(x) if x ∈ ∂Γ,

where, for x = π j(t), xhq := π j(t − hq). In fact, for any q ∈ [−1,1] such that xhq ∈ ē j , we have

wi(x) = 1 − e−ui(x) � 1 − e−ui(xhq)−hf (x)|q| = 1 − e−ui(xhq)e−hf (x)|q|

= (
1 − e−ui(xhq)

)
e−hf (x)|q| + 1 − e−hf (x)|q| = e−hf (x)|q|wi(xhq) + 1 − e−hf (x)|q|

and the first equation in (3.8) follows taking the infimum with respect to q. We proceed similarly for the other two equa-
tions.

We have that

sup
Γ

∣∣ S̄
(
h, x, w1(x)

) − S̄
(
h, x, w2(x)

)∣∣� β sup
Γ

∣∣w1(x) − w2(x)
∣∣

with β = e−hη < 1, see (2.4). Since S̄ is a contraction, we conclude that for h > 0 there exists at most one bounded solution
of (3.8) and therefore of problem (3.2).

Now we show the function uh is a bounded solution of (3.3)–(3.5). It is always possible to assume, by adding a constant,
that g � 0. It follows that uh � 0. Moreover it is easy to see that

uh(x) � ‖ f ‖∞ sup
x∈Γ

d(x, ∂Γ ) + sup
x∈∂Γ

g(x).

To show (3.5), observe that we have uh(x) �= g(x) for x ∈ ∂Γ if and only if there is some z ∈ ∂Γ such that g(x) > g(z) +
Fh(γ h) for some γ h ∈ Bh

z,x which gives a contradiction to (3.6).
We consider (3.3) and we first show the “�”-inequality. For x ∈ e j and for q ∈ [−1,1] such that xhq ∈ ē j , let y ∈ ∂Γ and

γ h
1 ∈ Bh

xhq,y be ε-optimal for uh(xhq). Define γ h = {γ h
i }1

i=0 with γ h
0 = x, γ h

1 = xhq . Hence γ h
1 ∪ γ h ∈ Bh

x,y (with xhq counted

only one time in γ h
1 ∪ γ h) and

uh(x) � g(y) +Fh
(
γ h ∪ γ h

1

)
� g(y) +Fh

(
γ h) + hf (x)|q| � uh(xhq) + ε + hf (x)|q|.

To show the reverse inequality, assume that for some x ∈ Γ ,

uh(x) � inf
q∈[−1,1]: x ∈ē

{
uh(xhq) + hf (x)|q|} − δ
hq j
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for δ > 0. Given ε < δ, let y ∈ ∂Γ and γ h
x,y = {γ h

m}M
m=0 ∈ Bh

x,y be ε-optimal for x. By the inequality

g(y) +Fh
(
γ h

xy

) − ε � uh(x) � uh(xhq) + hf (x)|q| − δ

it is clear that if y = xhq for some q ∈ [−1,1] we get a contradiction. Define γ h = γ h
x,y \γ h where γ h = {γ h

i }1
i=0 with γ h

0 = x,

γ h
1 = xhq . Since γ̄ h := γ h

x,y \ γ h ∈ Bh
xhq,y we have

g(y) +Fh
(
γ̄ h) = g(y) +Fh

(
γ h

x,y

) −Fh
(
γ h)� uh(xhq) + ε − δ,

a contradiction to the definition of uh and therefore (3.3). Eq. (3.4) can be proved in a similar way.
We finally show that the function uh is Lipschitz continuous in Γ , uniformly in h. Consider first the case of two points

in the same arc, i.e. x1, x2 ∈ ē j for some j ∈ J . Given ε > 0, denote γ h = {γ h
m} ∈ Bh

x1,x2
where

γ h
m =

⎧⎨⎩ x1, m = 0,

zm, m = 1, . . . , M − 1,

x2, m = M,

(3.9)

where |π−1
j (γm) − π−1

j (γm+1)| � h for m = 0, . . . , M . Let y ∈ ∂Γ and γ h
1 ∈ Bh

x1,y be ε-optimal for x1. Then γ h
1 ∪ γ h ∈ Bh

x2,y

and

uh(x2) � g(y) +Fh
(
γ h

1 ∪ γ h
2

)
� g(y) +Fh

(
γ h

1

) +Fh
(
γ h

2

)
� uh(x1) + C

M∑
m=0

h
∣∣π j(tm+1) − π j(tm)

∣∣ + ε � uh(x1) + Cd(x1, x2) + 2ε.

Exchanging the role of x1 and x2 we get∣∣uh(x1) − uh(x2)
∣∣ � Cd(x1, x2). (3.10)

If x1, x2 ∈ Γ , let γ be such that
∫ T

0 |γ̇ (s)|ds � d(x1, x2) + ε and {e jm }M
m=1 ⊂ J such that γ ([0, T ]) ⊂ ⋃M

m=1 e jm . For each
one of the couples (x1, v j1 ), (v jm , v jm+1 ) for m = 1, . . . , M and (v jM , x2) define a trajectory γ h

m as in (3.9). Then define
γ h ∈ Bh

x1,x2
by

γ h =
⎧⎨⎩

x1, k = 0,

γ h
k , k = ∑m

i=1 Mi−1, . . . ,
∑m

i=1 Mi−1 + Mm − 1,

x2, m = M̄,

where M̄ = ∑M+1
i=0 Mi . For tk = π−1

jm
(γ h

k ), k = ∑m
i=1 Mi−1, . . . ,

∑m
i=1 Mi−1 + Mm − 1, then we have tk+1 − tk = hqk with

|qk| � 1. Let y ∈ ∂Γ and γ h
1 ∈ Bh

x1,y be ε-optimal for x1. Then γ h
1 ∪ γ h ∈ Bh

x2,y and

uh(x2) � g(y) +Fh
(
γ h

1 ∪ γ h
2

)
� g(y) +Fh

(
γ h

2

) +Fh
(
γ h

2

)
� uh(x1) +

M̄∑
k=0

h|qk| f
(
γ h

k

) + ε � uh(x1) + Cd(x1, x2) + 2ε.

Exchanging the role of x1 and x2 we get (3.10) �
Remark 3.2. By Remark 3.1 and the continuity of f , assumption (2.6) implies

g(x) � inf
{
Fh(γ ) + g(y): γ ∈ Bh

x,y, y ∈ ∂Γ
} + Ch for any x, y ∈ ∂Γ.

Moreover, if g ≡ 0 on ∂Γ , the condition (3.6) is satisfied since Fh(γ h) � 0 for any γ h .

Theorem 3.1. Assume (3.6) for any h > 0 and (2.6). Then for h → 0, the solution uh of (3.2) converges uniformly to the unique solution
u of (2.3)–(2.5).

Proof. We first observe that (2.3) can be written in equivalent form as

sup
q∈[−1,1]

{−q∂u(x) − f (x)|q|} = 0.

By (3.7), uh converges, up to a subsequence, to a Lipschitz continuous function u. We show that u is a solution of (2.3) at
x ∈ Γ . We will consider the case x = vi ∈ IT , as otherwise the argument is standard (see f.e. [2, Th. VI.1.1]).
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To show that u is a subsolution, choose any j,k ∈ Inci , j �= k, along with a ( j,k)-test function ϕ of u at x. Observe that it
is not restrictive to consider x to be a strict maximum point for u − ϕ , since we otherwise consider the auxiliary function
ϕδ(y) := ϕ(y) + δd(x, y)2 for δ > 0 with ∂m(d(x, ·)2)(π−1

m (x)) = 0 for m = j and m = k. Then there exists r > 0 such that
u − ϕ attains a strict local maximum w.r.t. B̄r(x) at x, where Br(x) := {y ∈ Γ : d(x, y) < r}. Moreover x is a strict maximum
point for u − ϕ also in B̄ := B̄r(x) ∩ (ē j ∪ ēk). Now choose a sequence ωh → 0 for h → 0 with

sup
Γ

∣∣u(x) − uh(x)
∣∣ �ωh (3.11)

and let yh be a maximum point for uh − ϕ in B̄ . Up to a subsequence, yh → z ∈ B̄ . Moreover,

u(x) − ϕ(x) − ωh � uh(x) − ϕ(x) � uh(yh) − ϕ(yh)� u(yh) − ϕ(yh) + ωh.

For h → 0, we get u(x) − ϕ(x) � u(z) − ϕ(z). As x is a strict maximum point, we conclude x = z. Invoking

u(x) + ϕ(yh) − ϕ(x) − ωh � uh(yh)� u(yh) + ωh

we altogether get

lim
h→0

yh = x, lim
h→0

uh(yh) = u(x). (3.12)

We distinguish two cases:

Case 1. yh �= x. Then yh ∈ em with either m = j or m = k. Since uh − ϕ attains a maximum at yh , then for yh = πm(th) and
yhq = πm(th − hq) ∈ ēm

uh(yh) − ϕ(yh)� uh
(
π−1

m (yhq)
) − ϕ

(
π−1

m (yhq)
)

and therefore

sup
q∈[−1,1]: yhq∈ēm

{
−ϕ(π−1

m (yhq)) − ϕ(π−1
m (yh))

h
− hf m(yh)|q|

}
� 0. (3.13)

The set {q ∈ R: πm(t − hq) ∈ ēm} contains for h small enough either [−1,0] if ai,m = 1 or [0,1] if ai,m = −1. Passing to the
limit for h → 0 in (3.13), since f m(x)|q| = f m(x)|−q| we get

sup
q∈[−1,1]

{
q∂mϕ(x) − f (x)|q|} � 0.

Case 2. yh = x. Since uh − ϕ attains a maximum at x, then for x = π j(th) and yhq = π j(th − hq) ∈ ē j

uh(yh) − ϕ(yh)� u(yhq) − ϕ(yhq)

and therefore

sup
q∈[−1,1]: yhq∈ē j

{
−ϕ

j
h(yhq) − ϕ

j
h(yh)

h
− hf j(yh)|q|

}
� 0.

The set {q ∈ R: π j(t − hq) ∈ ē j} contains for h small enough either [−1,0] if ai, j = 1 or [0,1] if ai, j = −1 and passing to
the limit for h → 0 we conclude as in the previous case that

sup
q∈[−1,1]

{
q∂ jϕ(x) − f (x)|q|} � 0.

To show that u is a supersolution, we assume by contradiction that there exists j ∈ Inci such that for any k ∈ Inci , k �= j,
there exists a ( j,k)-test function ϕk of u at x for which

sup
q∈[−1,1]

{
q∂ jϕk(x) − f (x)|q|} < 0. (3.14)

By adding a quadratic function of the form −αkd(x, y)2 to the function ϕk we may assume that there exists r > 0 such that
u−ϕk attains a strict minimum in B̄r(x) at x. Observe that x is a strict minimum point of u−ϕk also in B̄k := B̄r(x)∩(ē j ∪ ēk).
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Since for any h, there exists kh such that

u j
h(vi) = inf

q∈[−1,1]: πkh
(t−hq)∈ēkh

{
ukh

h

(
πkh (t − hq)

) + hf kh (vi)|q|}
we may assume, up to a subsequence, that there exists k ∈ Inci such that kh = k for any h > 0.

Let yh be a minimum point of uh − ϕk in B̄k and let ωh be as in (3.11). As in the subsolution case, we prove that (3.12)
holds. If yh �= x, we have for yh = πm(th) and th − hq ∈ ēm

uh(yh) − ϕ(yh) � u
(
πm(th − hq)

) − ϕ
(
πm(th − hq)

)
and therefore

sup
q∈[−1,1]: πm(t−hq)∈ēm

{
−ϕm

h (πm(th − hq)) − ϕm
h (yh)

h
− hf m(yh)|q|

}
� 0

for either m = j or m = k. If yn = x, we get

sup
q∈[−1,1]: π j(t−hq)∈ē j

{
−ϕ

j
h(π j(th − hq)) − ϕ

j
h(yh)

h
− hf j(x)|q|

}
� 0.

Arguing as in the subsolution case we get for h → 0

sup
q∈[−1,1]

{
q∂ jϕ(x) − f (x)|q|} � 0,

which is a contradiction to (3.14).
We conclude the proof by observing that the uniqueness of the solution to (2.3) implies that any convergent subsequence

uh must converge to the unique solution u of (2.3)–(2.5) and therefore the uniform convergence of all the sequence uh
to u. �
3.2. Full discretization in space

In this section we introduce a FEM-like discretization of (3.2) yielding a fully discrete scheme. For any j ∈ J , given
x j > 0 we consider a finite partition

P j = {
t j

1 = 0 < · · · < t j
m < · · · < t j

M j
= l j

}
of the interval [0, l j] such that |P j | = max1,...,M j (t

j
m − t j

m−1) �x j . We set

x = max
j∈ J

x j, M =
∑
j∈ J

M j. (3.15)

The partition P j induces a partition of the arc ē j given by the points

x j
m = π j

(
t j
m
)
, m = 1, . . . , M j,

and we set Xx = ⋃
j∈ J

⋃M j

m=1 x j
m .

In each interval [0, l j] we consider a family of basis functions {β j
m}M j

m=0 for the space of continuous, piecewise linear

functions in the intervals of the partition P j . Hence β
j

m are piecewise linear functions satisfying β
j

m(tk) = δmk for m,k ∈
{1, . . . , M j}, 0 � β

j
m(t) � 1,

∑M j

m=1 β
j

m(t) = 1 and for any t ∈ [0, l j] at most 2 β
j

m ’s are non-zero. We define β̄ j : ē j →R by

β̄
j

m(x) = β
j

m
(
π−1

j (x)
)
.

Given W ∈ RM we denote by Ix[W ] the interpolation operator defined on the arc ē j by

I j
x[W ](x) =

M j∑
m=1

β̄
j

m(x)W j
m =

M j∑
m=1

β
j

m
(
π−1

j (x)
)
W j

m, x ∈ ē j .

We consider the approximation scheme

U = S(x,h, U ), (3.16)

where the scheme S = {S(x,h, W )} j∈ J is given by
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S j
m(x,h, W ) = inf

q∈[−1,1]: x j
m(q)∈ē j

{
I j[W ](x j

m(q)
) + hf

(
x j

m
)|q|} if x j

m ∈ e j, (3.17)

S j
m(x,h, W ) = inf

q∈[−1,1]: xk
m(q)∈ēk

k∈Inci

{
Ik[W ](xk

m(q)
) + hf

(
xk

m

)|q|} if x j
m = vi ∈ IT , (3.18)

S j
m(x,h, W ) = g(vi) if x j

m = vi, i ∈ I B , (3.19)

for x j
m(q) = π j(t j

m − hq).

Proposition 3.2. For any x > 0 with x � h/2, there exists a unique solution U ∈RM to (3.17)–(3.19). Moreover, defined uhx(x) =
Ix[U ], if x = o(h) for h → 0, then uhx converges to the unique solution u of (2.3)–(2.5) uniformly in Γ .

Proof. We show the boundedness of a solution to (3.16) by induction. For this purpose we number the nodes xi such that
d(xi+1, ∂Γ ) � d(xi, ∂Γ ) for all i = 1, . . . , M , and claim that

|Ui| � sup
x∈∂Γ

∣∣g(x)
∣∣ + h(Lg + M f ) + 2M f d(xi, ∂Γ ).

For each xi with d(xi, ∂Γ ) � h this estimate is immediate. Now assume the assertion is true for all xi with i = 1, . . . , l − 1.
For xl ∈ ē j by (3.16) we obtain the inequality

Ul � hf (xl)|q| + I j[U ](x j
l (q)

)
� hM f + I j[U ](x j

l (q)
)

for any q ∈Rn with |q|� 1 and x j
l (q) ∈ ē j . Choosing q such that d(x j

l (q), ∂Γ ) = d(xl, ∂Γ ) − h and using x � h/2 we obtain

that the value I j[U ](x j
l (q)) only depends on nodes xik with d(xik , ∂Γ ) � d(xl, ∂Γ ) − h/2, thus ik < l. Picking that node xik

such that Uik becomes maximal, and using the induction assumption we can conclude

Ul � M f h + Uik � M f h + sup
x∈∂Γ

∣∣g(x)
∣∣ + h(Lg + M f ) + 2M f

(
d(xi, ∂Γ ) − h/2

)
,

i.e. the assertion.
To show the existence of a unique solution U we apply the transformation

Ũ = 1 − e−U

to (3.16). Hence Ũ is a solution to

Ũ = S̃(x,h, U ), (3.20)

where

S̃ j
m(x,h, W̃ ) = inf

q∈[−1,1]: x j
m(q)∈ē j

{
e−hf (x j

m)I j[W̃ ](x j
m(q)

) + 1 − e−hf (x j
m)|q|} if x j

m ∈ e j,

S̃ j
m(x,h, W̃ ) = inf

q∈[−1,1]: xk
m(q)∈ēk

k∈Inci

{
e−hf (xk

m)Ik[W̃ ](xk
m(q)

) + 1 − e−hf (xk
m)|q|} if x j

m = vi ∈ IT ,

S̃ j
m(x,h, W̃ ) = 1 − e−g(vi) if x j

m = vi, i ∈ I B .

As in the proof of Proposition 3.1 we show that S̃ is a contraction in RM and we conclude that there exists a unique
bounded solution to (3.20) and therefore to (3.16).

To show the convergence of uhx to u, we set ũh = 1 − e−uh , ũhx = 1 − e−uhx and we estimate for x ∈ ē j∣∣ũh(x) − ũhx(x)
∣∣ � ∣∣ũh(x) − I j[Ũ h](x)

∣∣ + ∣∣I j[Ũ h](x) − I j[Ũ ](x)
∣∣, (3.21)

where Ũ h , Ũ are the vectors of the values of ũh , ũhx at the nodes of the grid. By the Lipschitz continuity and boundedness
of uh we get∣∣ũh(x) − I j[Ũ h](x)

∣∣ � Cx (3.22)

with C independent of h. Moreover, by (3.8) and (3.20) we get for xk = π−1
j (tk) ∈ e j , xhq := π j(tk −hq) and since x j

k(q) = xhq∣∣Ũ h − Ũk
∣∣ � e−hf (xk)

∣∣ũh(xhq) − I j[Ũ ](x j
(q)

)∣∣� e−hη‖ũh − ũhx‖∞, (3.23)
k k
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where η is as in (2.4). Substituting (3.22) and (3.23) in (3.21) we get

‖ũh − ũhx‖∞ � C

1 − e−ηh
x

and therefore, taking into account Theorem 3.1, we have that if x = o(h) for h → 0, then uhx converges to u uniformly
on Γ . �
4. Implementation of the scheme and numerical tests

In this section we discuss the numerical implementation of the scheme described in the previous section and we present
some numerical examples. We remark again that the most interesting feature of our approach is that it is intrinsically one-
dimensional, even if the graph is embedded in RN . For this reason it does not present the typical curse of dimensionality
issue which is usually encountered in solving Hamilton–Jacobi equations on RN .

The numerical implementation of semi-Lagrangian schemes has been extensively discussed in previous works (see for
example Appendix B in [2]), hence the only regard is due to vertices, where the information could come from different arcs.
We briefly describe the logical structure of the algorithm we use to compute the solution.

Let A be the m × m incidence matrix defined in (2.1). We also define a matrix BC which contains the information on
boundary vertices, in particular: BC(·,1) represents a boundary vertex and BC(·,2) = the value of the Dirichlet datum at
that vertex. The number of the edges is at most n = (m−1)m

2 and, after having ordered the edges, we define the auxiliary
edges matrix B ∈ M3,n where the i-row contains the following information:

• B(i,1) = #knot where the i-arc starts,
• B(i,2) = #knot where the i-arc ends,
• B(i,3) = length of the discretized i-arc.

We choose the same discretization step x ≡ xi for every edge, so that the approximated length of the edge i is Li =
trunc( B(i,3)

x ) ∈N+ and we consider a finite partition

P i = {
ti

0 = 0, ti
1 = x, ti

2 = 2x, . . . , ti
Mi−1 = (Mi − 1)x, ti

Mi
= B(i,3)

}
. (4.1)

The matrix C contains the grid points of the graph, i.e. for the edge i

C(i, j) = πi
(
ti

j

)
, j = 0, . . . , Mi . (4.2)

Finally, we denote by U (i, j) the approximated solution at the point C(i, j). We solve the problem using the following
iteration

HJ-networks algorithm.

1. Initialize
U = U0;
it = 0;

2. Until convergence, Do
3. for i = 0 to n
4. If there is an s s.t. B(i,1) = BC(s,1)

5. then U (i,0) = BC(s,2);
6. else
7. U (i,0) = min{min{k|A(B(i,1),k)=1}{I[U ](C(k, h

x ))},
min{k|A(B(i,1))=−1}{I[U ](C(k, B(k,3) − h

x ))}} + hf (C(i, j))
8. for j = 0 to B(i,3) − 1
9. U (i, j) = mina∈[−1,1]{I[U ](C(i, j + ah

x ))} + hf (C(i, j))
10. If there is an s s.t. B(i,2) = BC(s,2)

11. then U (i, B(i,3)) = BC(s,2);
12. else
13. U (i, B(i,3)) = min{min{k|A(B(i,2))=1}{I[U ](C(k, h

x ))},
min{k|A(B(i,2))=−1}{I[U ](C(k, B(k,3) − h

x ))}} + hf (C(i, j))
14. re-initialize vertex on U
15. EndDo
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Fig. 1. Test 1, structure of the graph.

The interpolation I[U ](C(i, x)) is the usual linear interpolation, i.e., said t(x) = trunc(x)

I[C](x) = C
(
i, t(x)

) + (x − t(x))

x

[
C
(
i, t(x) + 1

) − C
(
i, t(x)

)]
,

I[U ](C(i, x)
) = U

(
i, t(x)

) + (
I[C](x) − C

(
i, t(x)

)) U (i, t(x) + 1) − U (i, t(x))

C(i, t(x) + 1) − C(i, t(x))
. (4.3)

Remark 4.1. The order given to the edges, which is necessary to define the previous iteration, brings some additional
problems that we have to consider:

• At the end of each iteration of the method, the values of the solution at a same vertex, which is contained in different
arcs, could be different. Hence we make a re-initialization, choosing for every vertex the minimum of the previous
values.

• It is also important that the initial guess U0 of the solution we use to initialize the algorithm is greater than the
solution. In fact, if this condition is not satisfied, for particular choices of the discretization step the algorithm could
generate a non-correct minimum.

In the first test we consider a five knots graph with two straight arcs and two sinusoidal ones (see Fig. 1). The only
boundary knot is the one placed at the origin and the value of the solution at this knot is fixed to zero. The cost function
is constant, i.e. f (x) ≡ 1 on Γ . In this case the correct solution is

u(x) = dist(x,0) = |x2| for the straight arcs,

u(x) =
|x1|∫
0

(√
1 + (2π cos 2πt)

)
dt for sinusoidal arcs. (4.4)

An approximated solution is shown in Fig. 2. In Table 1, we compare the exact solution with the approximated one, obtained
by the scheme. We observe a numerical convergence to the correct solution in L2-norm and in the uniform one. As uni-
form norm we consider the maximum of the uniform norm of the error on every arc and as L2-norm the maximum of
the L2-norm on every arc. We can observe an order of convergence close to 0.5 that is the typical theoretical order of
convergence in the uniform norm of semi-Lagrangian schemes in Rn (see for instance [4]).

In the second test we present a more complicated graph with two boundary vertices and a several connections among
the arcs. (See Fig. 3.) Also in this case, we consider a constant cost function f (x) ≡ 1 on Γ . In Table 2 and in Fig. 4 we show
our results.

In this case we observe an improvement of order of convergence with respect to the previous example. This is due to the
fact that the graph is composed of only straight arcs and this reduces the error due to the piecewise linear discretization of
the arcs.

In the third test we consider a five knots graph (Fig. 5), with a running cost which is not constant. For any point on the
graph x = (x1, x2) ∈ Γ , we take f (x) = 10(x1 − 1) + η, hence f (x) � η > 0 for x ∈ Γ . In the example, we set η = 10−10. The
graph of the approximate solution is shown in Fig. 6. Also in this case we provide an experimental table of convergence
for the error (Table 3). In absence of an exact solution we compare the approximation for various grid sizes with a discrete
solution Uex on a fine grid (x = 0.005).
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Fig. 2. Test 1, x = 0.025.

Table 1
Test 1.

x = h ‖ · ‖∞ Ord(L∞) ‖ · ‖2 Ord(L2)

0.2 0.1468 0.1007
0.1 0.0901 0.7043 0.0639 0.6562
0.05 0.0630 0.5162 0.0491 0.3801
0.025 0.0450 0.4854 0.0402 0.2885
0.0125 0.0321 0.4874 0.029 0.4711

Fig. 3. Test 2, structure of the graph.

Table 2
Test 2.

x = h ‖ · ‖∞ Ord(L∞) ‖ · ‖2 Ord(L2)

0.2 0.1716 0.0820
0.1 0.0716 1.2610 0.0297 1.4652
0.05 0.0284 1.3341 0.0127 1.2256
0.025 0.0126 1.1611 0.0072 0.8188
0.0125 0.0056 1.1699 0.0037 0.9605
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Fig. 4. Test 2, x = 0.1.

Fig. 5. Test 3, structure of the graph.

Fig. 6. Test 3, x = 0.05.
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Table 3
Test 3.

x = h ‖ · ‖∞ Ord(L∞) ‖ · ‖2 Ord(L2)

0.2 0.3800 0.2078
0.1 0.1800 1.078 0.0855 1.2812
0.05 0.08 1.1699 0.0419 1.029
0.025 0.035 1.1926 0.0222 0.9164
0.0125 0.0166 1.0762 0.0103 1.1079

Fig. 7. Test 4, structure of the graph.

Fig. 8. Test 4, x = 0.05.

Table 4
Test 4.

x = h ‖ · ‖∞ Ord(L∞) ‖ · ‖2 Ord(L2)

0.2 0.7049 0.3676
0.1 0.2925 1.2690 0.1557 1.2394
0.05 0.1460 1.0025 0.0777 1.0028
0.025 0.0728 1.0040 0.0320 1.2798
0.0125 0.0375 0.9570 0.0108 1.5670
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As our last test we consider a graph with several boundary points and a more complicated running cost function f .
A representation of this graph is shown in Fig. 7. We consider the following function f

f (x1, x2) = 2.1 − sin(4πx1) + cos(4πx2) (4.5)

obviously, because of the regularity of this function, its restriction on the arcs of the graph is continuous. In Fig. 8 we show
the solution of the problem.

In Table 4 we show a comparison for the error in various grid steps. Also in this case, in absence of the correct solution,
we consider as correct the approximation on a fine grid (x = 0.005).
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