EE2 Maths Summary Sheet: Functions of Multiple Variables

1) The change in f following a small step $\Delta x, \Delta y$ is:

$$
\begin{equation*}
\Delta f \approx \frac{\partial f(x, y)}{\partial x} \Delta x+\frac{\partial f(x, y)}{\partial y} \Delta y \tag{1}
\end{equation*}
$$

The error in this approximation goes to zero as $\Delta x, \Delta y \rightarrow 0$.
2) In the limit $\Delta x, \Delta y \rightarrow 0 \mathrm{Eq}$. (1) becomes the Total Differential:

$$
\begin{equation*}
d f=\frac{\partial f(x, y)}{\partial x} d x+\frac{\partial f(x, y)}{\partial y} d y \tag{2}
\end{equation*}
$$

This generalises to $d f=\frac{\partial f}{\partial x_{1}} d x_{1}+\frac{\partial f}{\partial x_{2}} d x_{2}+\ldots \frac{\partial f}{\partial x_{n}} d x_{n}$ for functions of n variables.
3) Sometimes we have $f(x, y)$ but x and y are both themselves functions of a variable u such that $x(u), y(u)$. In this case the Chain Rule applies:

$$
\begin{equation*}
\frac{d f}{d u}=\frac{\partial f(x, y)}{\partial x} \frac{d x}{d u}+\frac{\partial f(x, y)}{\partial y} \frac{d y}{d u} . \tag{3}
\end{equation*}
$$

Note that this only applies when f is a univariate function of u.
4) Sometimes we can express $f(x, y)$ in another co-ordinate system as $f(u, v)$. In this case we can relate the co-ordinate systems by $x=x(u, v)$ and $y=y(u, v)$. We can then relate the partial differentials of f as follows:

$$
\begin{align*}
& \left.\frac{\partial f}{\partial u}\right|_{v}=\left.\left.\frac{\partial f}{\partial x}\right|_{y} \frac{\partial x}{\partial u}\right|_{v}+\left.\left.\frac{\partial f}{\partial y}\right|_{x} \frac{\partial y}{\partial u}\right|_{v} \tag{4}\\
& \left.\frac{\partial f}{\partial v}\right|_{u}=\left.\left.\frac{\partial f}{\partial x}\right|_{y} \frac{\partial x}{\partial v}\right|_{u}+\left.\left.\frac{\partial f}{\partial y}\right|_{x} \frac{\partial y}{\partial v}\right|_{u} \tag{5}
\end{align*}
$$

A rule of thumb to obtain e.g. Eq. (5) is to take the total differential Eq. (2) and "multiply through by $\left.\overline{\partial v}\right|_{u}$ ". Equations like Eq. $(4,5)$ are sometimes referred to as "expressing a change of variables in $f^{\prime \prime}$.
5) A Taylor's series expansion about a point can be generalized to the multivariate case. Below is the expression for an expansion of $f(x, y)$ about $\left(x_{0}, y_{0}\right)$ where we define $\Delta x=x-x_{0}$ and $\Delta y=y-y_{0}$ and evaluate the derivatives at x_{0}, y_{0} :

$$
\begin{equation*}
f(x, y)=f\left(x_{0}, y_{0}\right)+\Delta x \frac{\partial f}{\partial x}+\Delta y \frac{\partial f}{\partial y}+\frac{1}{2!}\left[\frac{\partial^{2} f}{\partial x^{2}}(\Delta x)^{2}+2 \frac{\partial^{2} f}{\partial x \partial y} \Delta x \Delta y+\frac{\partial^{2} f}{\partial y^{2}}(\Delta y)^{2}\right]+\ldots \tag{6}
\end{equation*}
$$

6) The total differential Eq. (2) can be written as $d f=d \underline{s} \cdot \nabla f$ where $d \underline{s}=(d x, d y)$ and $\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$ is called the Gradient Vector. ∇f : points, in the $x-y$-plane, in the direction of greatest change of f. It's magnitude $|\nabla f(x, y)|$ tells us the gradient in the direction $\nabla f(x, y)$.
7) There are three types of stationary points of $f(x, y)$: Maxima, Minima and Saddle Points. The sufficient conditions for a stationary point to be a Max, Min, Saddle are:

$$
\begin{array}{rrl}
\text { Max: } & f_{x x}<0 \text { and } f_{x y}^{2}-f_{x x} f_{y y}<0 \\
\text { Min: } & f_{x x}>0 \text { and } f_{x y}^{2}-f_{x x} f_{y y}<0 \\
& \text { Saddle }: & f_{x y}^{2}-f_{x x} f_{y y}>0 . \tag{9}
\end{array}
$$

8) If $f\left(x_{1} \ldots x_{n}\right)$ we can define $H_{i j}=\frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}} f\left(x_{1}, \ldots, x_{n}\right)$. The matrix H is called the Hessian.
9) Given that

$$
\begin{equation*}
F(x)=\int_{t=u(x)}^{t=v(x)} f(x, t) d t \tag{10}
\end{equation*}
$$

the Leibnitz' Integral Rule is then:

$$
\begin{equation*}
\frac{d F(x)}{d x}=f(x, v(x)) \frac{d v}{d x}-f(x, u(x)) \frac{d u}{d x}+\int_{t=u(x)}^{t=v(x)} \frac{\partial f}{\partial x} d t \tag{11}
\end{equation*}
$$

