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Abstract. We consider the stationary eikonal equation where the coefficients

are allowed to be discontinuous. The discontinuities must belong to a special
class for which the notion of viscosity solutions in the sense of Ishii is suitable.

We present a semi–Lagrangian scheme for the approximation of the viscosity

solution also studying its properties. The main result is an a-priori error
estimate in the L1-norm. In the last section, we illustrate some tests and

applications where the scheme is able to compute the right solution.

1. Introduction. In this paper we study the following boundary value problem.
Let Ω ⊂ RN be an open bounded domain with a Lipschitz boundary ∂Ω, we consider
the Dirichlet problem {

c(x)|Du(x)| = f(x) x ∈ Ω,
u(x) = g(x) x ∈ ∂Ω,

(1)

where f , c and g are given real functions defined on Ω. We focus our attention on
the case where f is positive, Borel measurable and possibly discontinuous.

In the most classical case, where c(x) is constantly equal to one, f(x) ≡ 1 and
g(x) ≡ 0, we get the eikonal equation giving the characterization of the distance
from ∂Ω. In other applications, e.g. in geometrical optics, computer vision, control
theory and robotic navigation, c and f can vary but have typically a constant sign
(e.g. positive). It is worth to note that in the study of many problems motivated
by real world applications a discontinuous f and/or a degenerate c can appear in a
natural way. In fact, one can easily imagine that the velocity of a front in a medium
is affected by the physical properties of the medium and can be discontinuous if
the medium is stratified by different materials. In the famous Shape-from-Shading
problem the right-hand side is f(x) = [(1−I2(x))/I2(x)]1/2 where I is the brightness
of the image. Depending on the shape of the object represented in the image I can
be discontinuous.
Another motivation to deal with discontinuous Hamiltonians comes directly from

2000 Mathematics Subject Classification. Primary: 35F30, 35R05; Secondary: 65N15.
Key words and phrases. Hamilton-Jacobi equation, discontinuous Hamiltonian, viscosity so-

lutions, semi– Lagrangian schemes, a-priori error estimates.

1



2 A. FESTA AND M. FALCONE

control theory. In the control framework discontinuous functions can be used to
represent targets (using f as a characteristic function) and/or state constraints
(using f as an indicator function). It is interesting to point out that, when the
Hamiltonian is discontinuous, the knowledge of f at every point will not guarantee
the well-posedness of the problem, even in the framework of viscosity solution. To
deal with this problem we will adopt the notion of discontinuous viscosity solutions
via semicontinuous envelopes of f introduced by Ishii in [13]. Other results of well-
posedness of Hamilton-Jacobi equations in presence of discontinuous coefficients
have been presented by various authors in several works (see [4, 11, 2]) and in the
specific case of the eikonal equation [19, 16].

Our primary goal is to prove convergence for a semi–Lagrangian scheme. The
typical convergence result, given in the L∞ norm, is natural when dealing with
classical viscosity solutions (see e.g. Crandall and Lions [6], Barles and Souganidis
[3] and Falcone and Ferretti [10]). It is clear that, dealing with discontinuous co-
efficients and/or discontinuous solutions, the classical assumptions for convergence
in the uniform norm are not satisfied. Then, it seems more natural to look for con-
vergence in the L1 norm as it happens in the analysis of approximation schemes for
conservation laws. However, the list of contributions on this topic is rather short. At
our knowledge, the only two convergence results in L1 has been proved by Lin and
Tadmor [18, 15] for a central finite difference scheme and by Bokanowski et al. [5]
in dimension one. Deckelnick and Elliott [8] studied a problem where the solution is
still Lipschitz continuous although the Hamiltonian is discontinuous. In particular,
they proposed a finite difference scheme and an a-priori error estimate. Although
our work has been also inspired by their results, we use different techniques and
our analysis is devoted to a scheme of semi–Lagrangian type (SL− scheme). The
benefits of a SL-scheme with respect to a finite difference scheme are a better ability
to follow the informations driven by the characteristics and the fact that they do
not require a structured grid. These peculiarities give us a faster and more accu-
rate approximation in many cases as it has been reported in the literature (see e.g.
[9, 7] or appendix A of [1]). It is also important to note that we prove an a-priori
error estimate in the general case where also discontinuous viscosity solutions may
appear.

2. The model problem and previous results. Let us start introducing the
definition of discontinuous viscosity solution and summarize for readers convenience
some well-posedness results.

Assumption A0. The boundary data

g : ∂Ω→ [0,+∞[ is continuous, (2)

c : Ω → R is a non negative and continuous function such that c(x) ≤ Mc for all
x ∈ Ω. Additional hypotheses will be added on the set where c vanishes later in
this paper. Moreover, the function f : RN → [ρ,+∞[, ρ > 0 is Borel measurable
and possibly discontinuous.

Let us remind the definition of discontinuous viscosity solution for (1) introduced
by Ishii in [13]. Let f be bounded in Ω, we define f∗ and f∗ which are respectively
the lower semicontinuous and the upper semicontinuous envelope of f as

f∗(x) = lim inf
r→0+

{f(y) : |y − x| ≤ r}, f∗(x) = lim sup
r→0+

{f(y) : |y − x| ≤ r}. (3)

Definition 2.1. A lower (resp. upper) semicontinuous function u : Ω→ R∪{+∞}
(resp. u : Ω→ R) is a viscosity super- (resp. sub-) solution of the equation (1) if for
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every φ ∈ C1(Ω), u(x) < +∞, and x ∈ arg min
x∈Ω

(u− φ), (resp. x ∈ arg max
x∈Ω

(u− φ)),

we have

c(x)|Dφ(x)| ≥ f∗(x), (resp. c(x)|Dφ(x)| ≤ f∗(x)).

A function u is a discontinuous viscosity solution of (1) if u∗ is a subsolution and
u∗ is a supersolution.

Note that also Dirichlet boundary conditions must be interpreted in the following
weak sense.

Definition 2.2. An upper semicontinuous function u : Ω → R, subsolution of
(1), satisfies the Dirichlet type boundary condition in the viscosity sense if for all
φ ∈ C1(Ω) and x ∈ ∂Ω, x ∈ arg max

x∈Ω

(u− φ) such that u(x) > g(x), we have

c(x)|Dφ(x)| ≤ f∗(x).

Lower semicontinuous functions that satisfy a Dirichlet type boundary condition
are defined accordingly.

In order to guarantee uniqueness we add the following assumption on f .
Assumption A1. Let us assume that there exist η > 0 and K ≥ 0 such that for

every x ∈ Ω there is a direction n = nx ∈ SN (SN is the unit ball of dimension N
centered at 0) such that

f(y + rd)− f(y) ≤ Kr, (4)

for every y ∈ Ω, d ∈ SN , r > 0 with |y − x| < η, |d− n| < η and y + rd ∈ Ω.
Under Assumptions A0–A1, a comparison theorem between sub- and superso-

lution holds [8] (a more general result can be found in [17]). It is important to
highlight that adopting the concept of discontinuous viscosity solution, that com-
parison result is not enough to prove uniqueness. Multiple discontinuous solutions
may exist without any contradiction. In that case, an important role is played by
two special elements of the class of solutions, the minimal supersolution and the
maximal subsolution, defined respectively (see [17] for details) as

Vm = inf
a∈A

∫ τx(a)

0

f∗(y(t, a))dt+ g(y(τx(a)), a),

VM = inf
a∈A

∫ τx(a)

0

f∗(y(t, a))dt+ g(y(τx(a)), a);

(5)

where τx(a) is the first exit time from the domain of a trajectory starting from x
and subject to the controlled dynamics ẏ(t) = a(t), with control a in SN . It is
also important to remark that in the case of existence of a continuous viscosity
solution automatically Vm ≡ VM and the family of solutions reduces to just one
solution. For an example of this case let us consider (1) in Ω = (−1, 1), f(x) = 0,
for x < 0, and f(x) = x for x ≥ 0 and c(x) = x. Let us fix the boundary condition
u(−1) = u(1) = 0. It is easy to verify that the piecewise continuous function,

u(x) =

{
0 x < 0

1− x x ≥ 0
(6)

is a viscosity solution of the problem. Indeed, we can change at x = 0 the value for
the solution in [0, 1] obtaining a family of discontinuous viscosity solutions whose
upper semicontinuous envelope is always VM whereas the lower semicontinuous en-
velope coincides with Vm.
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In order to state a more precise result, let us restrict ourselves to the special case
N = 2 where c vanishes on an interface Σ0 splitting the domain in two parts. This
choice is made to simplify the presentation, more general situations can be treated
in a similar way.

Let us denote by `(C) the length of a curve C and assume the existence of a
regular curve Σ0 which splits the domain Ω into two subset Ωj , j = 1, 2, where c
does not vanish.

Assumption A2. Let Σ0 := {x ∈ Ω|c(x) = 0}, we assume that Ω = Ω1∪Ω2∪Σ0

`(Σ0) < +∞ and Ωj ∩ ∂Ω 6= ∅ for j = {1, 2}.

We conclude this section with a regularity result, which can be derived by adapt-
ing the classical proof by Ishii [14]:

Theorem 2.3. Let Ω be an open domain with Lipschitz boundary. Assume A0,
A1, A2. Let u : Ω → R be a bounded viscosity solution of the problem (1), then u
is Lipschitz continuous in every set Ω1 and Ω2.

3. The semi–Lagrangian approximation scheme and its properties. We
construct a semi–Lagrangian approximation scheme for the equation (1) following
the approach illustrated in [9].

Using the Kruzkov’s change of variable, v(x) = 1− e−u(x), problem (1) becomes{
max
a∈S2
{c(x)a ·Dv(x)} = f(x)(1− v(x)) x ∈ Ω,

v(x) = 1− e−g(x) x ∈ ∂Ω.
(7)

There exists a clear interpretation of this equation as the value function of an
optimization problem with constant running cost and discount factor equal to one,

and the dynamics given by c(x)
f(x)a (see [1] for more details).

We discretize the left-hand side term of the first equation in(7) as a directional
derivative getting the following discrete problem: vh(x) = 1

1+h inf
a∈B(0,1)

{
vh

(
x− h

f(x)c(x)a
)}

+ h
1+h x ∈ Ω,

vh(x) = 1− e−g(x) x ∈ ∂Ω,
(8)

where h is a positive real number and we will assume (to simplify the presentation)
that x− h

f(x)c(x)a ∈ Ω for every a ∈ S2.

Let introduce a space discretization of (8) yielding a fully discrete scheme. We
construct a regular triangulation of Ω made by a family of simplices Sj , such that

Ω = ∪jSj , denoting xm, m = 1, ..., L, the nodes of the triangulation, by ∆x :=
maxj diam(Sj) the size of the mesh (diam(B) denotes the diameter of the set B)
and by G the set of the knots of the grid. We look for a solution of{

W (xm) = 1
1+h min

a∈B(0,1)
I[W ](xm − h

f(xm)c(xm)a) + h
1+h xm ∈ G,

W (xm) = 1− e−g(xm) xm ∈ G ∩ ∂Ω,
(9)

where I[W ](x) is a linear interpolation of W at the point x. Therefore, we look for
the solution of equation (9) in the space of piecewise linear functions

W∆x :=
{
w : Ω→ R|w ∈ C(Ω) and Dw(x) = costj for any x ∈ Sj

}
,

the existence and uniqueness of a solution in such space is an easy application of
the Contraction Mapping Theorem.
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∆x = h Vmerror || · ||1 Ord(L1) VMerror || · ||1 Ord(L1)

0.2 0.1729 0.2204
0.1 0.1166 0.5684 0.1054 1.0642
0.05 0.0765 0.6080 0.0517 1.0276
0.025 0.0495 0.6280 0.0257 1.0084
0.0125 0.0349 0.5042 0.013 0.9833

Table 1. Test 1: experimental errors in L1(Ω) for the approxima-
tion of Vm and VM .

Proposition 1. Let xm − h
f(xm)c(xm)a ∈ Ω, for every xm ∈ G and for any a ∈

B(0, 1), then there exists a unique solution W of (9) in W∆x.

We can also prove that this scheme is monotone and consistent with the equation,
and the following a-priori error estimate in L1(Ω) holds true.

Theorem 3.1. Let A0, A1 and A2 hold true. Let v(x) be a viscosity solution of
(7) and W (x) ∈ W∆x be a piecewise linear function satisfying (9). Then, there
exist two positive constants C,C ′ (independent from h and ∆x) such that for h and
∆x satisfying h

∆x ≤
ρ
Mc

, (ρ and Mc appear in Assumption A0) we have:

||v(x)−W (x)||L1(Ω) ≤ C
√
h+ C ′∆x. (10)

Proof. We just sketch the main steps of the proof (which cen be found in [12]). We
start introducing the set Σ∆x defined as

Σ∆x :=
{
x ∈ Ω|S2

x,∆x ∩ Σ0 6= ∅
}
,

where S2
x,∆x denotes the ball of radius ∆x centred at x. We observe that

||v(x)−W (x)||L1(Ω) ≤
∑
j=1,2

∫
Ωj

|v(x)−W (x)|dx+

∫
Σ∆x

|v(x)−W (x)|dx, (11)

where Ω := ∪jΩj is the partition of Ω generated from Σ0.
By the definition of Kruzkov’s transform, we know that |v(x) −W (x)| ≤ 2 for

every x ∈ Ω and adding the assumptions on the set Σ0 we get, for a fixed C ′ > 0,∫
Σ∆x

|v(x)−W (x)|dx ≤ 2

∫
Σ∆x

dx ≤ 2`(Σ0)∆x ≤ C ′∆x. (12)

To prove the statement, we need to prove an estimate for the term
∫

Ωj
|v(x) −

W (x)|dx for every j. To this end, we remind that for Theorem 2.3, both v(x)
and W (x) are Lipschitz continuous, so we can use a modification of the classical
argument based on the variable doubling.

4. Numerical experiments and applications. In this section we present some
test problems pointing out the main features of our numerical scheme.

4.1. Test 1: a 1D example. We want to solve the following equation on the
interval [−1, 1]

|xu′| = f(x), (13)
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Figure 1. Test 1 (left): two approximations of the value function,
Test 2 (right): level sets of the approximated value function.

with u(±1) = 0 and

f(x) :=

{
1 x > 0,
0 x < 0.

(14)

We denote by f∗ the function defined above where f(0) = 1 and by f∗ the same
function where f(0) = 0. As we explained in the previous section, to have a bounded
solution we use the Kruzkov transform to pass to the equation

|xv′| = f(x)(1− v(x)). (15)

In this case we can get easily a correct solution (which is not unique) and we can
explicitly calculate Vm and VM . In this particular case the solutions of the dynamics
are very simple, they are y(t) = xe−at. Then we have

Vm(x) =

{ ∫ ln−x−1

0
0 dt = 0 x ≤ 0∫ ln x−1

0
e−tdt = [−e−t]ln x

−1

0 = 1− x x > 0
(16)

It is simple to show with the same reckoning, that Vm(x) = VM (x) for x ∈ Ω \ {0}.
The functions will diverge only at x = 0 where Vm(0) = 0 6= 1 = VM (0) accordingly
to the fact that Vm is l.s.c. and VM is u.s.c.

Therefore, in this case we do not have a unique viscosity solutions, however

Vm(x) = (VM )∗(x) =

{
0 x ≤ 0,
1− x x > 0,

(17)

is our unique lower semicontinuous solution. We want to verify if the numerical
approximation introduced in the previous section, converges to all the elements of
the solutions class. Let make a test obtaining the results contained in Figure 1 and
in Table 1 where we perform the scheme using f∗ (in some sense, we are computing
Vm) and f∗ (computing VM ). We can see in both cases a good convergence in
L1-norm although there is no convergence in the L∞-norm.

4.2. Test 2: a 2D example. Let us consider, the equation |Du(x)| = f(x) in
Ω = (−1, 1)2, where

f(x1, x2) :=


2, (x1 − 1

2 )2 + x2
2 ≤ 1

8 and x2 ≥ x1 − 1
2 ,

3, (x1 − 1
2 )2 + x2

2 ≤ 1
8 and x2 < x1 − 1

2 ,

1, otherwise,
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∆x = h || · ||∞ Ord(L∞) || · ||1 Ord(L1)

0.2 0.3281 0.6134
0.1 0.1732 0.9217 0.3355 0.8705
0.05 0.0858 1.0134 0.1691 0.9884
0.025 0.0417 1.0409 0.0776 1.1237
0.0125 0.0192 1.1189 0.0296 1.3905

Table 2. Test 2: experimental error.

and we apply homogeneous boundary conditions u(x) = 0 on ∂Ω. Note that in this
case, discontinuities of f occur both along curved lines and straight lines. This shows
the good capability of the semi–Lagrangian scheme to approximate the solution
(Figure 1), this is due to the fact that the directions used in the scheme are not
aligned with the geometry of the grid. Note that in this case we have existence of
a continuous solution (therefore uniqueness of the viscosity solution) and that the
error estimate in L1–norm applies. We can see in Table 2 that in this case we have
also convergence in the L∞–norm. Due to the fact that in this case an analytic
solution is not available we have used as exact solution a numerical approximation
obtained on a very fine grid (∆x = 0.005).

4.3. Test 3: finding the exit from a labyrinth. We apply our scheme to find
the exit path from a labyrinth Q. We can write this problem as a minimum time
problem with state constraints (the walls can not be crossed). The geometry of the
labyrinth is shown in Figure 2 where the gray square is the exit (the target T for
the minimum time problem). We have computed the solution of

|Du(x)| = f(x) x ∈ Q \ T , (18)

with Dirichlet boundary conditions u(x) = 0 on ∂T and discontinuous running cost

f(x) =

{
M if x is on the walls,
1 otherwise.

(19)

In the test we have chosen ∆x = h = 0.0078, M = 1010. In Figure 2 we can see the
plot of the value function obtained.

Acknowledgments. This work was supported by the European Union under the
7th Framework Programme FP7-PEOPLE-2010-ITN SADCO, Sensitivity Analysis
for Deterministic Controller Design.

REFERENCES

[1] M. Bardi and I. Capuzzo-Dolcetta, “Optimal Control and Viscosity Solutions of Hamilton-

Jacobi-Bellman Equations”, Birkhäuser, Boston, 1997.
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