
Noname manuscript No.
(will be inserted by the editor)

Domain decomposition based parallel Howard’s algorithm

Adriano Festa

Received: date / Accepted: date

Abstract The Classic Howard’s algorithm, a technique of resolution for discrete
Hamilton-Jacobi equations, is of large use in applications for its high efficiency
and good performances. A special beneficial characteristic of the method is the
superlinear convergence which, in presence of a finite number of controls, becomes
in finite time. These features give to the method a special interest in the resolution
of problems with a big dimensionality, common issue in the sector. Performances
of the method can be significantly improved by using parallel calculus; how to
build a parallel version of method is not a trivial point, the difficulties come from
the strict relation between various values of the solution, even related to distant
points of the domain. In this contribution we propose an original parallel version of
the Howard’s algorithm driven by an idea of domain decomposition. This permit
to derive some important properties and proving the convergence under quite
standard assumptions. The key point about the conditions of connection between
the sub domains will be discussed and validated. Through some tests and examples
will be shown the good features of the algorithm.

Keywords Howard’s algorithm (policy iterations), Semi-smooth Newton’s
method, Parallel Calculus, Domain Decomposition

Mathematics Subject Classification (2000) 49M15 · 65Y05 · 65N55

This work was supported by the European Union under the 7th Framework Programme FP7-
PEOPLE-2010-ITN SADCO, Sensitivity Analysis for Deterministic Controller Design.

Adriano Festa
ENSTA ParisTech
Tel.: +33 (0) 782271537
E-mail: adriano.festa@ensta.fr
91120 Palaiseau

2 Adriano Festa

1 Introduction

The Howard’s algorithm (also called policy iteration algorithm) is a classical
method for solving a discrete Hamilton-Jacobi equation. This technique, devel-
oped by Bellman and Howard [5,13], is of large use in applications, thanks to its
good proprieties of efficiency and simplicity. This method, using the concept of
slant differentiability introduced in [15],[16], can be shown to be of semi-smooth
Newton’s type, with all the good features in term of superlinear convergence and,
in some cases of interest, even quadratic convergence.

In this paper, we propose a parallel version of it, discussing the advantages and
the weak points of such proposal.

To validate the steps necessary to the building of the technique, we will use a
theoretical construction inspired by some recent results on domain decomposition
(for example Barles, Briani and Chasseigne [2], or Rao and Zidani [17] based on
the concept of Essential Hamiltonian [4]). Despite that, thanks to a greater regu-
larity of the Hamiltonian, the decomposition can be studied just using standard
techniques.

Parallel Calculus applied to Hamilton Jacobi equations resolution is a subject of
actual interest because of the strict limitation of serial tools in real problems, where
the memory storage restrictions and limits in the CPU speed, cause easily the
infeasibility of the computation, even in cases relatively easy. With the purpose to
build a parallel solver, the main problem to deal with is to manage the information
passing through the threads. Our analysis is not the first contribution on the topic,
but this is an original study of the specific possibilities offered by the Howard’s
algorithm.

At our knowledge the first parallel algorithm proposed was by Sun in 1993 [20] on
the numerical solution of the Bellman equation related to an exit time problem
for a diffusion process (i.e. for second order elliptic problems); and by Camilli,
Falcone, Lanucara and Seghini [7] where an operator of the semiLagrangian kind,
was proposed and studied on the interfaces of splitting. More recently, the issue
was discussed also by Zhou and Zhan [22] where, passing to a quasi variational
inequality formulation equivalent, there was possible a domain decomposition.

Our intention is to show a different way to approach to the topic. Decomposing
the problem directly in its differential form, effectively, it is possible to give a
coherent interpretation to the condition to impose on the boundaries of the sub-
domains. Thereafter, passing to a discrete version of such decomposed problem it
becomes relatively easy to show the convergence of the technique to the correct
solution, avoiding the technical problems, elsewhere observed, about the manner
to exchange information between the sub-domains. In our technique, as explained
later, we will substitute it with the resolution of an auxiliary problem living in
the interface of connection in the domain decomposition. In this way, data will be
passed implicitly through the sub-problems.

The paper is structured as follows: in section 2 we recall the classic Howard’s al-
gorithm and the relation with the differential problem, focusing on the case of its
Control Theory interpretation. In section 3, after mentioning the decomposition

Domain decomposition based parallel Howard’s algorithm 3

results useful in the following, we present the algorithm, and we discuss the con-
vergence. Section 4 is dedicated to a presentation of the performances and to show
the advantages with respect the non parallel version. We will end present some
possible extensions of the technique to some problems of interest: in the presence
of a target to reach, obstacle constraints in the domain, max-min problems.

2 Classic Howard’s algorithm

The problem considered is the following. Let be Ω open domain of Rd (d ≥ 1);
the steady, first order, Hamilton-Jacobi equation (HJ) is described in the following
form: {

λv(x) +H(x,Dv(x)) = 0 x ∈ Ω
v(x) = g(x) x ∈ ∂Ω (1)

where, following its Optimal Control interpretation, λ ∈ R+ is the discount factor,
g : Ω → R is the exit cost, and the Hamiltonian H : Ω × Rd → R is defined by:
H(x, p) := infα∈A{−f(x, α) · p − l(x, α)} with f : Ω × A → R (dynamics) and
l : Ω×A → R (running cost). This choice it is not restrictive but useful to simplify
the presentation. As extension of the techniques we are going to present, it will be
shown, in the dedicate section, as the same results can be obtained in presence of
different kind of Hamiltonians, as in obstacle problems or in differential games.

Under classical assumptions on the data, it is known (see [1], [11]) that the equation
(14) admits a unique solution v : Ω → R in the weak sense of viscosity solutions.
We can assume the global Lipschitz continuity of f(·, α) and l(·, α) with the last
one uniformly bounded and the compactness of A; these conditions are sufficient
to prove the existence and the uniqueness of a solution in the viscosity sense.

The solution v is the value function to the infinite horizon problem with exit cost,
where τx is the first time of exit form Ω:

v(x) = inf
a(·)∈L∞([0,+∞[;A)

τx(a)∫
0

l(yx(s), a(s))e−λs ds+ e−λτx(a)g(yx(τx(a))),

where yx(·) is a.e. solution of

{
ẏ(t) = f(y(t), a(t))
y(0) = x

Numerical schemes for approximation of such problem have been proposed from
the early steps of the theory, let us mention the classical Finite Differences Schemes
[10], [19], semiLagrangian [12], Discontinuous Galerkin [9] and many others.

In this paper we will focus on a monotone, consistent and stable scheme (class in-
cluding the first two mentioned above), which will provide us the discrete problem
where to apply the Howard’s Algorithm.

Considered a discrete grid G with N points xj , j = 1, ..., N on the domain Ω, the
finite N-dimensional approximation of v, V , will be the solution of the following
discrete equation (Vj = V (xj))

Vi = Fhi (V1, ..., VN), i ∈ {1, ..., N} (2)

4 Adriano Festa

where h := max diamSj , (maximal diameter of the family of simplices Sj built on
G) is the discretization step, and related to a subset of the Vj , there are included
the Dirichlet conditions following the obvious pattern

Fhj (V1, ..., VN) := g(xj), xj ∈ ∂Ω.

We will assume on F , some Hypotheses sufficient to ensure the convergence of the
discretization

(H1) Monotony. For every choice of two vectors V,W such that, V ≥W (component-
wise) then Fhi (V1, ..., VN) ≥ Fhi (W1, ...,WN) for all i ∈ {1, ..., N}.

(H2) Stability. If the data of the problem are finite, for every vector V , there ex-
ists a C ≥ 0 such that V , solution of (2), is bounded by C i.e. ‖V ‖∞ =
maxi=1,...,N |Fhi (V1, ..., VN)| ≤ C independently from h.

(H3) Consistency. ϕ(y) − Fhi (ϕ(y1) + ξ, ..., ϕ(yN) + ξ) → λϕ(x) + H(x, ϕ(x), Dϕ(x))
for ϕ ∈ C1(Ω), x ∈ Ω, with h→ 0, y → x, and ξ → 0.

Generally, numerical solution is archived by a fixed point iteration of the kind
V s+1
i = Fhi (V s).

Under these assumptions it has been discussed and proved [19] that V , solution of
(2), converges to v, viscosity solution of (14) for h→ 0.

The special form of the Hamiltonian H gives us a correspondent special structure
of the scheme F , in particular, with a rearrangement of the terms, the discrete
problem (2) can be written as a resolution of a nonlinear system in the following
form:

Find V ∈ RN ; min
α∈AN

(B(α)V − cg(α)) = 0 (3)

where B is a N × N matrix and cg is a N vector. The name cg is chosen just
to underline (it will be important in the following) that in that vector there are
contained the information about the Dirichlet conditions imposed on the boundary.
The Policy Iteration Algorithm (or Howard’s Algorithm) consists in a two-steps
iteration with an alternating improvement of the policy and the value function, as
shown in Table 1.

It is by now known [6] that under a monotonicity assumption on the matrices
B(α), automatically derived from H1 (as shown below), the above algorithm is a
non smooth Newton method that converges superlinearly to the discrete solution
of problem. The convergence of the algorithm is also discussed in the earlier work
[18,?] where the results are given in a more regular framework.

Additionally, if A has a finite number of elements, and this is the standard case of
a discretized space of the controls, then the algorithm converges in a finite number
of iterations.

Proposition 1 Let us assume H1. Then if the matrix B(α) is invertible, then it is

monotone and not null for every α ∈ A ∩ arg minB(α)V − cg(α) for a V ∈ Rn.

Domain decomposition based parallel Howard’s algorithm 5

Howard’s Algorithm (HA)

Inputs: B(·), cg(·). (Implicitly, the values of V at the boundary points)

Initialize V 0 ∈ RN and α0 ∈ AN
Iterate k ≥ 0:

i) Find V k ∈ RN solution of B(αk)V k = cg(αk).
If k ≥ 1 and V k = V k−1, then stop. Otherwise go to (ii).

ii) αk+1 := arg min
α∈An

(
B(α)V k − cg(α)

)
.

Set k := k + 1 and go to (i)

Outputs: V k+1.

Table 1 Pseudo-code of HA

Proof Considering the equivalence between (2) and (3), we can see, for i ∈ Ik that[
V −

(
min
α

B(α)V − cg(α)
)]
i

= Fi(V).

Let us consider a vector V ≥ 0 componentwise (here and in the following we will
call 0 the null matrix). Using the monotony H1

(I−B(ᾱ))V + cg(ᾱ) ≥ −min
αA
−cg(α̂)

where ᾱ := arg minB(α)V − cg(α). Now

B(ᾱ)(V) ≤ V, ⇒ B−1(ᾱ) ≥ I ≥ 0,

which is sufficient to prove the monotonicity of B(α) for the arbitrariness of the
choice of V .

It is useful to underline the conceptual distinction between the convergence of the
algorithm and the convergence of the numerical approximation to the continuous
function v as discussed previously. In general, the Howard’s algorithm is an accel-
eration technique for the calculus of the approximate solution, the error with the
analytic solution will be depending from the discretization scheme used.

To conclude this introductory section let us make two monodimensional basic
examples.

Example 1 (1D, Upwind scheme, Howard’s Algorithm) An example for the matrix
B(α) and the vector cg(α) is the easy case of an upwind explicit Euler scheme in
dimension one

V0 = g(x0)

λVi = min
αi∈A

(
l(xi, αi) + f+

i (αi)
Vi+1−Vi

h + f−i (αi)
Vi−Vi−1

h

)
, i ∈ {2, ..., N − 1}

VN = g(xN)

6 Adriano Festa

where xi is a uniform discrete grid consisting in N knots of distance h. Moreover,
f+
i (αi) = max{0, f(xi, αi)} and f−i (αi) = min{0, f(xi, αi)}. In this case the system

(3) is

B(α) =

1 +

[f+
1 −f

−
1]

hλ − f
+
1

hλ 0 · · · 0
f−2
hλ 1 +

[f+
2 −f

−
2]

hλ − f
+
2

hλ · · · 0

0
. . .

. . .
. . . 0

0 · · · · · · f−N
hλ 1 +

[f+
N−f

−
N]

hλ

and

cg(α) =
1

λ

−f−1 g(x0) + l(x1, α1)

l(x2, α2)
...

l(xN−1, αN−1)
+f+

N g(xN+1) + l(xN , αN)

It is straightforward that the solution of Howard’s algorithm, verifying minαB(α)V−
cg = 0, is the solution of (1).

Example 2 (1D, Semilagrangian, Howard’s Algorithm) If we consider the standard
1D semiLagrangian scheme, the matrix B(α) and the vector cg(α) are

B(α) =

1− e−λhb1(α1) −e−λhb2(α1) · · · −e−λhbN (α1)

−e−λhb1(α2) 1− e−λhb2(α2) · · · −e−λhbN (α2)
. . .

. . .
. . .

. . .

−e−λhb1(αN) · · · −e−λhbN−1(αN) 1− e−λhbN (αN)

and

cg(α) =

hl(x1, α1) + e−λhb0(α1)g(x0)

hl(x2, α2)
...

hl(xN−1, αN−1)

hl(xN , αN) + e−λhbN+1(αN)g(xN+1)

and the coefficients bi are the weights of a chosen interpolation I[V](xi+hf(xi, αj)) =∑N+1
i=0 bi(αj)Vi.

Despite the good performances of the Policy Algorithm as a speeding up technique,
in particular in presence of a convenient initialization (as shown for example in
[14]) an awkward limit appears naturally: the necessity to store data of very big
size.

Just to give an idea of the dimensions of the data managed it is sufficient consider
that for a 3D problem solved on a squared grid of side n, for example, it would be
essential to manage a n3×n3 matrix, task which becomes soon infeasible, with the
increase of n. This give us an evident motivation to investigate the possibility to
solve the problem in parallel, containing the complexity of the sub problems and
the memory storage.

Domain decomposition based parallel Howard’s algorithm 7

3 Domain Decomposition and Parallel version

The strict relation between the various points of the domain displayed by equation
(14), makes the problem to find a parallel version of the technique, not an easy task
to accomplish. The main problem, in particular, will be about passing information
between the threads, necessary without a prior knowledge about the direction of
the characteristics of the problem.

Our idea is to combine the policy iteration algorithm with a domain decomposition
principle for HJ equations. Using the theoretical framework of the resolution of
Partial Differential Equations on submanifolds, presented for example in [17,2],
we consider a decomposition of Ω on a collection of subdomains:

Ω :=
MΩ⋃
i=1

Ωi
MΓ⋃
j=1

Γj , with
◦
Ωi ∩

◦
Ωj= ∅, for i 6= j. (4)

Where the interfaces Γj , j = 1, · · · ,MΓ are some strata of dimension lower than d

defined as the intersection of two subdomains Ωi ∩Ωk for i 6= k.

The notion of viscosity solution on the manifold, in this regular case, will be
coherent with the definition elsewhere

Definition 1 A subsolution u on Γ is a usc function in Γ such that for any ϕ ∈
C1(Rd) and any maximum point x0 ∈ Γ of x→ u(x)− ϕ(x) is verified

λϕ(x0) +H(x0, Dϕ(x0)) ≤ 0,

the definition of supersolution is made accordingly.

Theorem 1 Let us consider a domain decomposition as stated in (4). The continuous

function v : Ω → R, verifying in the viscosity sense of the system below
λv(x) +H(x,Dv(x)) = 0 x ∈ Ωi, i = 1, ...,MΩ

λv(x) +H(x,Dv(x)) = 0 x ∈ Γj , j = 1, ...,MΓ ,

v̄(x) = g(x), x ∈ ∂Ω,
(5)

is coincident with the viscosity solution v(x) of (14).

Proof It is necessary to prove the uniqueness of a continuous viscosity solution for
(5). After that, just invoking the existence and uniqueness results for the solution
v (solution of the original problem), and observing that it is also a continuous
viscosity solution of the system, from coincidence on the boundary, we get thesis.

To prove the uniqueness it is possible to use the classical argument of “doubling
of variables”. We recall the main steps of the technique for the convenience of
the reader. For two continuous viscosity solutions ū, v̄ of (5) using the auxiliary
function

Φε(x, y) := ū(x)− v̄(y)− |x− y|
2

2ε

8 Adriano Festa

which has a maximum point in (xε, yε), it is easy to see that

max
x∈Ω

(ū− v̄)(x) = max
x∈Ω

Φε(x, x) ≤ max
x,y∈Ω

Φε(x, y) = Φε(xε, yε)

now the limit
lim inf
ε→0+

Φε(xε, yε) ≤ 0,

is proved as usual deriving Φε and using the properties of sub supersolution, (for
example, [1] Theo. II.3.1) with the observation that no additional problem appears
when (xε, yε) ∈ Γj because of the regularity of the Hamiltonian through Γj ; for the
possibility to exchange the role between ū and v̄ (both super and subsolutions) we
have uniqueness.

In the following section we propose a parallel algorithm based on the numerical
resolution of the decomposed system above. This technique consists of two steps
iterations:

(i) Use Howard’s algorithm to solve in parallel (n threads) the nonlinear systems
obtained after discretization of (5) on the subdomains Ωi (in this step the
values of V are fixed on the boundaries);

(ii) Update the values of V on the interfaces of connection
⋃
j Γj by using Howard’s

algorithm on the nonlinear system obtained from the second equation of (5)
(in this case the interior points of Ωj are constant).

As it is shown later, this two-step iteration permits the transfer of information
trough the interfaces performed by the phase (ii). This procedure, anyway, is not
priceless, the number of the steps necessary for its resolution will be shown to
be higher than the classic algorithm; the advantage will be in the resolution of
smaller problems and the possibility of a resolution in parallel. Moreover, the
coupling between phase (i) and (ii) produces a succession of results convergent in
finite time, in the case of a finite space of controls.

The good performances of the algorithm, benefits and weak points will be discussed
in details in Section 4.

3.1 Parallel Howard’s Algorithm

To describe precisely the algorithm it is necessary state the following. Let us
consider as before a uniform grid G := {xj : j ∈ I}, the indices set I := {0, ..., N},
and a vector of all the controls on the knots α := (α1, ..., αN)T ∈ AN .

The domain Ω is decomposed as Ω := ∪ni=1Ωi ∪ Γ , where, coherently with above
Γ := ∪MΓ

j=1Γj ; this decomposition induces an similar structure in the indices set
I := I1 ∪ I2 ∪ ... ∪ ...In ∪ J , where every point xk of index in Ii is an “interior

point”, in the sense that for every xj ∈ Bh(xk) (ball centred in xk of radius h,
defined as previously), j /∈ Ii, for every j 6= k. The set J is the set of all the
“border points”, which means, for a i ∈ J we have that there exists at least two
points xj , xk ∈ Bh(xi) such that j ∈ Ij and k ∈ Ik with j 6= k.

Domain decomposition based parallel Howard’s algorithm 9

We will build n discrete subproblems on the subdomains Ωi using as described
before a monotone, stable and consistent scheme. In this case a discretization of
the Hamiltonian provide, for every subdomain Ωi, related to points xj , j ∈ Ii, a

matrix B̂i(αi) and a vector ĉi(αi, {Vj}j∈J), we highlighted here, the dependance
of ci from the border points which are, both, points where there are imposed the
Dirichlet conditions (data of the problem) and points on the interface Γ which
have to be estimed.

Assumed for simplicity that every Ii has the same number of k elements, called
k̄ := card(J), we have k := N−k̄

n , and B̂i(·) ∈Mk×k, ĉi(·, ·) ∈ Rk.

In resolution over Γ we will have a matrix B̂n+1(αn+1) and a relative vector

ĉn+1(αn+1, {Vj}j∈I\J), in the spaces, respectively, Mk̄×k̄ and Rk̄. (For the 1D
case, e.g., we can easily verify that k̄ = n − 1). In this framework, the numerical
problem after the discretization of equations (5) is the following:

Find V := (V1, ..., Vi, ..., Vn, Vn+1) ∈ RN with Vi = {Vj ∈ Rn | j ∈ Ii} for i =

1, ..., n and Vn+1 = {Vj ∈ Rk |j ∈ J }, solution of the following system of nonlinear
equations:

min
αi∈Ak

(
B̂i(αi)Vi − ĉi(αi, Vn+1)

)
= 0 i = 1, ..., n

min
αn+1∈Ak̄

(
B̂n+1(αn+1)Vn+1 − ĉn+1(αn+1, {Vi}i∈{1,...n})

)
= 0

(6)

The resolution of first and the second equation of (6) will be called respectively
parallel part and iterative part of the method. The resolution of the parallel and
the iterative part will be performed alternatively, as a double step solver. So, the
iteration of the algorithm will generate a sequence V s ∈ RN solution of the two
steps system

min
α∈AN

(
Bi(α)V s+2 − ci(α, V s+1)

)
= 0 i = 1, ..., n

min
α∈AN

(
Bn+1(α)V s+1 − cn+1(α, V s)

)
= 0

V 0 = V0.

(7)

Where Bi(·), ci(·, ·) are the matrices and vectors in MN×N , and RN , containing
B̂i(·), ĉi(·, ·) and such to return as solution the argument of ci(α, ·) elsewhere.
Evidently, Bi(·) ci(·, ·) with i ∈ {1, ..., n} are: equal to B̂i in the {ik, .., (i + 1)k −
1} × {ik, .., (i + 1)k − 1} blocks, and equal to the raws Ii of the identity matrix
elsewhere, ci = ĉi in the {ik, .., (i+ 1)k−1} elements of the vector and ci(·, V) = V

elsewhere; the same, in the {nk+1, .., N}×{nk+1, .., N} block, {nk, .., N} elements
of the vector for i = n+1. It is clear that, despite this formal presentation, made to
simplify the notation in the following, each equation of (7), negletting the trivial
relations, is a nonlinear system on the same dimension than (6). Clearely, a solution
of (6) is the fixed point of (7).

It is evident that such technique can be expressed as{
V s+2
j = Fhj (V s+2, V s+1) j ∈ Ii, with i = 1, ..., n

V s+1
j = Fhj (V s+1, V s) j ∈ J

10 Adriano Festa

where, coherently with above Fhj (V,W) :=

[
V + min

α∈AN
(Bi(α)V − ci(α,W))

]
j

for

j ∈ Ii.

From the assumptions on the discretization scheme some specific properties of
Bi(·) and ci(·, ·) can be derived

Proposition 2 Let us assume H1−H3. Let state also

(H4) if W1 ≥W2 then ci(α,W1) ≥ ci(α,W2), for all i = 1, ..., n+ 1, for all α ∈ A.

Then there exists an unique solution of the system (7); moreover it holds true the

following.

1. The matrices B̂i(α) are monotone and not null for every i ∈ {1, ..., n+ 1}, and for

every α ∈ A.

2. If ‖V ‖∞ < +∞, we have that for all i ∈ {1, ..., n+ 1} and for every α ∈ A, there

exists a C > 0 such that

‖ci(α, V)‖∞ ≤
C

‖B−1
i (α)‖∞

.

3. Called V ∗ the fixed point of (7), if we have V ≤ V ∗ (resp. V ≥ V ∗) and V = V ∗

in the idential arguments of ci, then there exists a α ∈ A such that

Bi(α)V − ci(α, V) ≤ 0 (resp. Bi(α)V − ci(α, V) ≥ 0) ∀i = 1, ..., n+ 1. (8)

Proof To prove 1 the argument is the same of Proposition 1, just adding, (for H4)
that ci(·, V) ≥ ci(·, 0) because of the positivity of V . To prove 2, it is sufficient to
note that for a j ∈ Ik the function Fj has the following form

Fj(V,W) =
[
B−1
k (ᾱ)ck(ᾱ,W)

]
j

for a control ᾱ minimizing a problem of the kind (3).

To prove 3, we notice that for a V ≤ V ∗,

0 = min
α

Bi(α)V ∗ − ci(α, V ∗) = Bi(ᾱ)V ∗ − ci(ᾱ, V)

where ᾱ := arg minBi(α)V ∗ − ci(α, V ∗); at the same time

0 = min
α

Bi(α)V ∗ − ci(α, V ∗) ≥ Bi(ᾱ)V − ci(ᾱ, V ∗)

then summing the two terms, the assumption is valid at least for ᾱ.

Here we introduce a convergence result for the (PHA) algorithm.

Theorem 2 Assume that the function α ∈ AN → B(α) ∈M and (α, x) ∈ AN×Rn →
c(α, x) ∈ RN are continuous on the variable α, A is a compact set of Rd, and (H1−H4)
hold.

Then there exists a unique V ∗ in RN solution of (6). Moreover, the sequence V k

generated by the (PHA) (7) has the following properties:

Domain decomposition based parallel Howard’s algorithm 11

Iterative Parallel Howard’s Algorithm (PHA)

Inputs: Bi(·), ci·, V kn+1) for i = 1, ..., n+ 1

Initialize V 0 ∈ RN and α0.
Iterate k ≥ 0:

1) (Parallel Step) for each i = 1, ..., n
Call (HA) with inputs B(·) = Bi(·) and cg(·) = ci(·, ·)
Get V ki = {V k(xj)|j ∈ Ii}.

2) (Sequential Step)
Call (HA) with inputs B(·) = Bn+1(·) and cg(·) = cn+1(·, {V ki }i = {1, ..., n})
Get V kn+1 = {V k(xj)|j ∈ J}.

3) Compose the solution V k+1 = (V k1 , ..., V
k
n , V

k
n+1)

If ‖V k+1 − V k‖∞ ≤ ε then exit, otherwise go to (1).

Outputs: V k+1

Table 2 Pseudo-code of PHA

(i) Every element of the sequence V s is bounded by a constant C, i.e. ‖V s‖∞ ≤ C <

+∞.

(ii) If V 0 ≤ V ∗ then V s ≤ V s+1 for all k ≥ 0.

(iii) V s → V ∗ when s tends to +∞.

Proof The existence of a solution comes directly from the monotonicity of the
matrices B̂(α), the existence of an inverse and then the existence of a solution of
every system of 6. Let us show that such solution is limited as limit of a sequence
of vectors of bounded norm. Observing that,

‖V s‖∞ = max
{
‖V si ‖∞

}
i=1,...,n+1

Without loss of generality we assume that ‖V s‖∞ ≡ ‖V si∗‖∞. Calling

α̂ := arg min
α∈A

Bi∗(α)V s − c(α, V s−1),

the following bound is valid:

‖V s‖∞ = ‖V si∗‖∞ ≤ ‖B
−1
i∗ (α̂)‖∞‖ci∗(α̂, V s−1)‖∞.

Then, if V s−1 is bounded then ‖V s‖ ≤ C. Noting that ‖V 0‖ is bounded, the thesis
follows for induction.

Let us to pass now to prove the uniqueness. Let us take V,W ∈ RN two solutions.
Let us also define the vector W ∗ equal to V in the arguments non null of ci(α, ·)
and equal to W elsewhere, for a i ∈ {1, ..., n + 1}. We have that, for a control β
(for Proposition 2.3),

Bi(β)V − ci(β, V) ≥ 0 ≥ Bi(β)W ∗ − ci(β,W ∗) = Bi(β)W − ci(β, V)

then B̂i(β)(V −W) ≤ 0 and for monotonicity V ≤ W for j 6= i. Exchanging the
role of V and W , and for the arbitrariety of i we get the thesis.

12 Adriano Festa

(i) To prove that V k ∈ RN is an increasing sequence is sufficient to prove that
taken V1, V2 ∈ RN solution of

min
α∈A

Bi(α)V2 − ci(α, V1) = 0

with (the opposite case is analogue) V2 ≤ V ∗, for a choice of i ∈ {1, ..., n + 1} is
such that V2 ≥ V1. Let us observe, for a choice of β ∈ A as Prop. 2

0 = min
α∈A

Bi(α)V2 − ci(α, V1)

≤ Bi(β)V2 − ci(β, V1) ≤ Bi(β)V2 − (Bi(β)V1 − ci(β, V1))− c(β, V1)

then B̂i(β)(V2 − V 1) ≥ 0 then V2 ≥ V1.

(ii) For monotony and boundedness of the sequence already shown we have the
thesis.

It is also possible to show that the method stops to the fixed point in a finite time.
As the Classic Howard’s algorithm, this is an excellent feature of the technique;
unfortunately, the estimate which is possible to guarantee is largely for excess and,
although important from the theoretical point of view, not so effective to show the
good qualities of the method. The performances will checked in the through some
tests in the Section 4.

Proposition 3 If Card(A) < +∞ and convergence requests of Theorem 2 are verified,

then (PHA) converges to the solution in less than Card(A)N iterative steps.

Proof The proof is slightly similar to the classic Howard’s case, [6].

Let us consider the abstract formulation F : x → y, where F (x) is determined by
NF parameter in A, and G : y → x, where G(y) is determined by NG parameter in
A. Then if we consider the iteration

F (xk) = yk

G(yk) = xk+1 (9)

and we suppose (Theorem 2) xk ≤ xk+1, yk ≤ yk+1; than called αk the NF +NG
variables in A associated to (xk, yk) we know that there exist a k and a l where
k < l ≤ Card(A)NF+NG , such that αk = αl, and again (xk, yk) = (xl, yl). After-
wards (xk, yk) is a fixed point of (9).
To restrict to our case is sufficient identify the process F with the (parallel) reso-
lution on the sub-domains and G with the iteration on the surfaces.

Remark 1 It is worth to notice that the above estimation is worst than the Classical
Howard’s case. In fact, the classical algorithm find the solution in Card(A)N ,
the (PHA) will have the same number of iterative steps. This number has to be
multiplied, called M1 the maximum number of nodes in a sub-domain and M2 the
number of nodes belonging to the interface, for Card(A)(M1+M2) getting, at the
end, a total number of simple steps equal to Card(A)(N+M1+M2), much more than
the classical case. In this analysis we do not consider anyway, the good point of
decomposition techniques, the fact that any computational step is referred to a
smaller and simpler problem, with the evident advantages in term of time elapsed
in every threads and memory storage.

Domain decomposition based parallel Howard’s algorithm 13

Fig. 1 Approximated solution of the iterative/parallel algorithm (left) in the 1D case, final
time (dotted) and fifth iteration (solid), in the 2D case (right, 3rd iteration).

4 Performances, tuning parameters

The performances of the algorithm and its characteristics as speeding up technique
will be tested in this section. Let us start with a standard academic example where,
anyway, are present all the main characteristics of our technique.

1D problem. Consider the monodimensional problem{
u(x) + |Du(x)| = 1 x ∈ (−1, 1),
u(−1) = u(1) = 0.

(10)

It is well known that this equation (Eikonal equation) modelize the distance from
the boundary of the domain, scaled by an exponential factor (Kruzkov transform,
cf. [1]). Through a standard Euler discretization is obtained the problem in the
form (3). In Table 4 is shown a comparison, in term of speed and efficacy, of our
algorithm and the Classic Howard’s one, in the case of a two thread resolution. It is
possible appreciate as the parallel technique is not convenient in all the situations.
This is due to the low number of parallel threads which are not sufficient to justify
the construction. In the successive test, keeping fixed the parameter dx and tuning
number of threads it is possible to notice how much influential is that variable in
the speed of resolution.

Table 3 Testing performances, 1D. Our method compared with the classic Howard’s with two
sub-problems

2-splitting Classic Howard’s Alg. Parallel Howard’s Algorithm

dx time (s) it. t. (par. p.) (s) it. (par.) t. (it. p.) Total t.
0.1 e-3 10 1e-4 4 1e-5 1e-3
0.05 6e-3 20 8e-4 5 e-5 3e-3
0.025 0.09 40 7e-3 6 2e-5 0.04
0.0125 0.32 80 0.048 8 1e-4 0.36
0.00625 2.22 160 0.34 14 8e-4 3.26

14 Adriano Festa

Table 4 Testing performances, 1D. Our method compared with the classic Howard’s with
various number of threads

dx=0.0125 Classic Howard’s Alg. Parallel Howard’s Algorithm

threads t. (s) it. t. (par. p.) (s) it. (par.) t. (it. p.) Total t.
2 0.48 4 1e-4 0.36
4 8e-3 6 1e-4 0.086
8 0.32 80 18e-4 7 6e-4 0.014

16 7e-4 10 4e-4 0.0095
32 2e-4 8 6e-3 0.011

In Table 4 we compare the iterations and the time necessary to reach the approx-
imated solution, analysing the various phases of the algorithm, the time and the
iterations necessary to solve every sub-problem (first two columns), the iterations
and the time elapsed for the iterative part (which passes the information through
the threads, next two columns), finally the total time. It is highlighted the optimal
choice of number of threads (16 threard); it is evident as that number will change
with the change of the discretization step dx. Therefore it is useful to remark that
an additional work will be necessary to tune the number of threads accordingly to
the needing of the problem; otherwise the risk is to is to loose completely the gain
obtained through parallel calculus and to get worse performances even compared
with the classical Howard’s algorithm.

As in the rest of the paper all the codes are developed in Mathworks’ MATLABTMand
performed on a processor 2,8 Ghz Intel Core i7; in the tests the parallelization is
simulated.

Table 5 Testing performances, 2D. Comparison with classical method and PH with 4 threads

4-threads Cl. Howard’s Parallel Howard’s Algorithm

dx time (s) it. t. (par. p.) (s) it. (par.) t. (it. p.) it. (it. p.) Total t.
0.1 0.05 11 0.009 8 0.02 2 0.04
0.05 2.41 21 0.05 13 0.03 2 0.14
0.025 73.3 40 2.5 22 0.15 3 7.83
0.0125 - - 76 40 1.293 5 383.3

2D problem. The next test is in a space of higher dimension. Let us consider the
approximation of the scaled distance function from the boundary of the square
Ω := (−1, 1)× (−1, 1), solution of the eikonal equation{

u(x) + inf
a∈B(0,1)

{−a ·Du(x)} = 1 x ∈ Ω,

u(x) = 0 x ∈ ∂Ω.
(11)

where B(0, 1) ∈ R2 is the usual unit ball. For the discretization of the problem
is used a standard Euler discretization. Similar tests than the 1D case are per-
formed, confirming the good features of our technique and, as already shown, the

Domain decomposition based parallel Howard’s algorithm 15

Fig. 2 Comparison with various initial guess to the speed of convergence of our method, in
the L2-norm (left) and distribution of the error dx = 0.0125, 16 threads (right).

necessity of an appropriate number of threads with respect to the complexity of
the resolution.

In Table 5 performances of the Classic Howard’s algorithm are compared with
our technique. In this case the number of threads are fixed to 4; the Iterative-
Parallel technique is evaluated in terms of: maximum time elapsed in one thread
and max number of iterations necessary (first and second columns), time and
number of iterations of the iterative part (third and fourth columns) and total
time. In both the cases the control set A := B(0, 1) is substituted by a 32−points
discrete version. It is evident, in the comparison, an improvement of the speed of
the algorithm even larger than the simpler 1D case. This justifies, more than the
1D case, our proposal.

Table 6 Testing performances, 2D. Comparing different choices of the number of threads

dx=0.025 Classic Howard’s Alg. Parallel Howard’s Algorithm

threads t. (s) it. t. (par. p.) (s) it. (par.) t. (it. p.) Total t.
4 2.5 22 0.15 7.83
9 0.9 18 0.5 5.08

16 73.3 0.05 13 1.6 1.826
25 0.03 12 2.4 2.52
36 0.016 11 6.04 6.11

In the Table 6 are compared the performances for various choices of the number
of threads, for a fixed dx = 0.025. As in the 1D case is possible to see how an
optimal choice of the number of threads can drastically strike down the time of
convergence. In Figure 2 is possible to see the distribution of the error. As is
predictable, the highest concentration will correspond to the non-smooth points
of the solution. It is possible to notice also how our technique apparently does not
introduce any additional error in correspondence of the interfaces connecting the
sub-domains.

16 Adriano Festa

Fig. 3 Two level sets (corresponding to levels u(x) = 0.192 (left) u(x) = 0.384 (right) of the
approximated solution obtained with a dx = 0.1 and an 8−threads PHA.

Remark 2 As shown in the tests, an important point of weakness of our technique
is represented by the iterative part, which is smaller and therefore easier than the
ones solved in the parallel part, but it is highly influential in terms of general
performances of the algorithm. In particular the number of the iterations of the
coupling iterative-parallel part is sensible to a good initialization of the “internal
boundary” points. As is shown in Figure 2 a right initialization, even obtained
on a very coarse grid, is highly influential in the number of performances. In this
section, all the tests are made with a initialization of the solution on a 16-point
grid.

Table 7 Testing performances, 3D. Comparison with classical method and PI-H with 8 threads

8-threads Cl. Howard’s Iterative-Parallel Howard’s Algorithm

dx time (s) it. t. (par. p.) (s) it. (par.) t. (it. p.) it. (it. p.) Total t.
0.4 0.004 4 0.003 4 0.002 1 0.05
0.2 0.22 6 0.026 6 0.016 2 0.052
0.1 164.2 11 1.102 8 2.1 4 6.78
0.05 - - 164 10 4.98 3 494

3D problem. Analogue results are obtained also in a 3D resolution. Of course the
effects of the increasing number of control points will limit the possibility of a fine
discretization of the domain.
Let us consider the domain Ω := [−1, 1]3 and the equation (11), where A := B(0, 1),
unitary ball in R3. In Figure 3 there are shown two level sets of the solution
obtained. A comparison with the performances of the Classic Howard’s algorithm
are shown in Table 6.

Remark 3 With the growth of the dimensionality of the problem a special care
should be dedicated to the resolution of the iterative step. Suppose to simplify the

Domain decomposition based parallel Howard’s algorithm 17

Fig. 4 Optimal number of splitting for number of variables in the discretization (left) and
iterative structure of the algorithm (right) to reduce the original problem (green) to a fixed
number of variables sub-problems (blue).

procedure considering a square domain (in dimension d = 1, 2, 3, .. an interval, a
square, a cube..) and a successive splitting in square subdomains. Calling N the
number of total variables and Ns the number of the splitting (which generates
a division in Nd

s subdomains) the number of the elements in every threads of
the parallel part is N

(Ns)d
, and the number of the variables in the iterative part

N
d√
N

(Ns−1)d. Clearly the optimal choice of the number of threads is such that the

elements of the iterative part are in the same number of each subdomain, so it is
straight forward to find the following optimal relation between number of splitting
and total elements

N =
(
Nd
s (Ns − 1)d

)d
It is evident that for a high number of elements, (Figure 4) the number of threads to
be optimal is seriously limited, in particular in the high dimensional case, provoking
an high number of elements in every threads. This reduces noteworthy the efficacy
of the parallelization. The problem can be overcome with an additional parallel
decomposition (sketched in Figure 4) of the iterative pass, permitting us to reduce
each subproblem to a complexity acceptable.

5 Extensions and Special Cases

In this section are shown some non trivial extensions to more general situations of
the method. We will show, in particular, how to adapt the parallelization procedure
to the case of a target problem, an obstacle problem and max-min problems,
where, we recall the special structure of the Hamiltonian requires some cautions
and remarks.

18 Adriano Festa

Fig. 5 Approximated solution for the Zermelo’s navigation problem dx = 0, 01.

5.1 Target problems

An important class of problems where is useful to extend the techniques discussed
is the Target problems, complementary problem of the discussed exit-problems,
where a trajectory is driven to arrive in a Target set T ⊂ Ω optimizing a cost
functional.

A easy way to modify our Algorithm to this case is to change the construction
procedure for B and C:

[
B′(α)

]
i

:=

{
[B(α)]i , if xi /∈ T
[I]i , otherwise;

c′(α)i :=

{
c(α)i, if xi /∈ T
0, otherwise;

(12)

this, with the classical further construction of ghost nodes outside the domain Ω

to avoid the exit of the trajectories from Ω, will solve this case.

Example 3 (Zermelo’s Navigation Problem) Another well known benchmark in the
field is the so-called Zermelo’s navigation problem, the main problem, in this case,
is that the dynamic is driven by a force of comparable power with respect to our
control. The target to reach will be a ball of radius equal to 0.005 centred in the
origin

f(x, a) = a+

(
1− x2

2

0

)
, Ω = [−1, 1]2, A = B(0, 1), λ = 1, l(x, y, a) = 1.

(13)

In Table 8 a comparison with the number of threads chosen is made. Now we are in
presence of characteristics not aligned with the grid, but the performances of the
method are poorly effected. Convergence is archived with performances absolutely
comparable with the ones already described for the Eikonal Equation.

Domain decomposition based parallel Howard’s algorithm 19

Table 8 Zermelo’s navigation problem. Comparison of various choices of the number of
threads

dx=0.025 Classic Howard’s Alg. Parallel Howard’s Algorithm

threads t. (s) it. t. (par. p.) (s) it. (par.) t. (it. p.) Total t.
4 1.31 11 0.13(4) 5.4
9 0.7 9 0.7(5) 4.2
16 37.9 20 0.031 7 1.38(5) 1.53
25 0.02 7 2.7(6) 3.9
36 0.01 8 5.19(7) 5.28

5.2 Obstacle Problem

Dealing with a optimal problem with constraints various approaches have been
proposed. In this section we will consider an implicit representation of the con-
straints through a level-set function. Let us to consider the general single obstacle
problem {

max (λv(x) +H(x,Dv(x)), v(x)− w(x)) = 0 x ∈ Ω
v(x) = g(x) x ∈ ∂Ω (14)

where the Hamiltonian H is of the form discussed in Section 2 and the standard
hypothesis about regularity of the terms involved are verified. The distinctive trait
of this formulation is about the term w(x) : Ω → R, assumed regular, typically
stated as the opposite of the signed distance from the boudary of a subset K ⊂ Ω.
The solution of this problem is coincident, where defined, with the solution of the
same problem in the space in the space Ω \K, explaining the name of “obstacle
problem” (cf. [8]).

Through an approximation of the problem in a finite dimensional one, in a similar
way as already explained, is found the following variation of the Howard’s problem

Find V ∈ RN ; min
α∈AN

min(B(α)V − c(α), V −W) = 0, (15)

where the term W is a sampling of the function w on the knot of the discretization
grid.

It is direct to show that changing the definition of the matrix B and c, is possible
to come back to the problem (3). Adding an auxiliary control to the set A′ :=
A× {0, 1} and re-defying the matrices B and c as

[
B′(α)

]
i

:=

{
[B(α)]i , if B(α)V − c(α) ≥ V −W
[I]i , otherwise;

(16)

c′(α)i :=

{
c(α)i, if B(α)V − c(α) ≥ V −W
Wi, otherwise;

(17)

for i = 1, ..., N

(where the Xi is the i−row if X is a matrix, and the i− element if X is a vector,
and I is the identity matrix), the problem becomes

20 Adriano Festa

Fig. 6 Value function of Dubin Car Problem (left, free of constraints) and some optimal
trajectories in the case with constraints (right, the Target is y = {−1, 1}).

Find V ∈ RN ; min
α∈A′

(B′(α)V − c′(α)) = 0 (18)

which is in the form (3). To ensure the convergence of the (PHA) Algorithm is
necessary to verify the Hypothesis of Theorem 2.

Remark 4 The verification of conditions of convergence in the obstacle problem
are often trivially derived from the free of constraints case. For example if we have
that the matrix B(α) is strictly dominant (i.e. Aij ≤ 0 for every j 6= i, and there
exists a δ > 0 such that for every i, Aii ≥ δ +

∑
i6=j |Aij |), then the properties of

the terms are automatically verified, (i.e. since all Bi(α) are strictly dominant and
thus monotone).

Example 4 (Dubin Car with obstacles)

A classical problem of interest is the optimization of trajectories modelled by

f(x, y, z, a) :=

 c cos(πz)
c sin(πz)

a

which produce a collection of curves in the plane (x, y) with a constraint in the
curvature of the path. Typically this is a simplified model of a car of constant
velocity c with a control in the steering wheel.
The value function of the exit problem from the domain Ω := (−1, 1)2, A = [−1, 1]
discretized uniformly in 8 points is presented in Figure 6. It is straight forward to
imagine the same problem with the presence of constraints. That problem can be
handled with the technique described above producing the results shown in the
same Figure 6.

Domain decomposition based parallel Howard’s algorithm 21

PHA (MaxMin case)

Initialize V 0 ∈ RN α0 for all i ∈ {1, ..., n+ 1}.
k:=1;

1) Iterate (Parallel Step) for every i = 1, ..., n do:
s := 0
1.i) Find V si ∈ Rn solution of Fβi (V si) = 0.

If s ≥ 1 and V si = V s−1
i , then Vi := V si , and exit (from inner loop).

Otherwise go to (1.ii).

1.ii) βs+1
i := arg min

α∈An
Fβi (V si) = 0.

Set s := s+ 1 and go to (1.i)
2) Iterate (Sequential Step) for t ≥ 0

2i) Find V tn+1 ∈ Rh solution of Fβn+1(V tn+1) = 0.

If t ≥ 1 and V tn+1 = V t−1
n+1 , then Vn+1 = V tn+1, and go to (3).

Otherwise go to (2ii).

2ii) βt+1
n+1 := arg min

βn+1∈Bh
Fβn+1(Vn+1) = 0.

Set t := t+ 1 and go to (2i)
3) Compose the solution V k+1 = (V1, V2, ..., Vn, Vn+1)

k:=k+1;
If V k+1 = V k then exit, otherwise go to (1).

Table 9 Pseudo-code of PHA for MaxMin problems.

5.3 Max-min Problems

Another natural extension of the Howard’s problem (3) is about max-min problems
of the form

Find V ∈ RN ; max
β∈BN

(
min
α∈AN

(B(α, β)V − c(α, β))

)
= 0. (19)

Such a non linear equations arises in differential games setting and in robust
control, for example. Also in this case, a modified version of the policy iteration
algorithm can be shown to be convergent (cf. [6]). Our aim in this subsection is to
show how even a parallel version of the procedure is possible.

Let A and B be two compact sets, and let us consider the differential problem (14)
with the Hamiltonian H(x, p) := infβ∈B supα∈A{−f(x, a, b) · p − l(x, a, b)}. There
exists a wide literature about the study of this problem, but for our purposes,
it is sufficient consider the case where the viscosity solutions of this problem is
unique, and the Isaacs’ condition (H(x, p) = H(x, p) := supα∈A infβ∈B{−f(x, a, b) ·
p − l(x, a, b)})) is verified. For a whole presentation of the subject we recall the
monographs [3],[1].

As in section 3 we introduce a decomposition of the domain Ω and using again
Theorem 1, which needs just the existence and uniqueness of the solution, we can
state an analogue result to (5). This give us the authorization to proceed with a
decomposed version of the problem(19).

22 Adriano Festa

We also introduce the function Fβi : Rn → R, for β ∈ Bn and i ∈ I defined by

Fβi (V) := min
α∈An

(B(α, β)V − c(α, β, V) (20)

It is evident that the problem (19), in analogy with the previous case, is equivalent
to solve the following system of nonlinear equations

min
β∈Bk

Fβi (Vi) = 0 i = 1, ..., n

min
β∈Bh

Fβn+1(Vn+1) = 0
(21)

The Iterative-Parallel Version of the Howard Algorithm in the case of a maxmin
problem is summarized in Table 9.

Remark 5 It is worth to notice that at every call of the function Fβ is necessary
to solve a minimization problem over the set A, this can be performed in an
approximated way, using, for instance, the classical Howard’s algorithm. This gives
to the dimension of this set a big relevance on the performances of our algorithm.
For this reason, if the cardinality of A (in the case of finite sets) is bigger than B, it
is worth to pass to the alternative problem −maxα∈Aminβ∈B(B(α, β)V − c(α, β))
(here are used the Isaacs’ conditions) before the resolution, inverting in this way,
the role of A and B in the resolution.

Example 5 (A Pursuit-Evasion game) One of the most known example of max-min
problem is the Pursuit evasion game; where two agents have the opposite goal
to reduce/postpone the time of capture. One of the most simple contest of that
problem is related to a dynamic

f(x, y, z, a, b) :=

(
a1/2− b1
a2/2− b2

)
controls are taken in the unit ball A = B = B(0, 1) and capture happens when the
trajectory is driven to touch the small ball B(0, ρ), (ρ = 0.15, in this case). The
passage to a Target problem is managed as described previously. In Figure 7 the
approximated value function of that problem is shown.

6 Conclusions

References

1. M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solution of
Hamilton-Jacobi-Bellman Equations. Birkhauser, Boston Heidelberg, 1997.

2. G. Barles, A. Briani and E. Chasseigne, A Bellman approach for two-domains optimal
control problems in RN . ESAIM Contr. Op. Ca. Va., Vol. 19 n. 03 (2013), pp. 710–739.

3. M. Bardi, T.E.S. Raghavan, T. Parthasarathy, Stochastic and Differential Games: Theory
and Numerical Methods, Birkhäuser, Boston, 1999.

4. R.C. Barnard and P.C. Wolenski, Flow Invariance on Stratified Domains, Set-Valued
Var. Anal., 21 (2013) pp. 377–403.

Domain decomposition based parallel Howard’s algorithm 23

Fig. 7 Approximated solution of the Pursuit Evasion game, dx = 0.0125

5. R. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, 1957.
6. O. Bokanowski, S. Maroso and H. Zidani, Some convergence results for Howard’s al-

gorithm, SIAM J. Numer. Anal. Vol 47, n. 4, (2009), pp. 3001–3026.
7. F. Camilli, M. Falcone, P. Lanucara and A. Seghini, A domain decomposition Method

for Bellman Equations, Cont. Math. 180, (1994) pp. 477–483.
8. F. Camilli, P. Loreti and N. Yamada, Systems of convex Hamilton-Jacobi equa-

tions with implicit obstacles and the obstacle problem, Comm. Pure App. Math., vol.
8, no.(2009), p. 1291–1302.

9. Y. Cheng, Yingda and C.-W. Shu. A discontinuous Galerkin finite element method for
directly solving the Hamilton-Jacobi equations. Journal of Computational Physics 223 1
(2007): 398–415.

10. M. G. Crandall and P. L. Lions Two Approximations of Solutions of Hamilton-Jacobi
Equations, Math. Comp. Vol. 43 n. 167 (1984) pp. 1–19.

11. L.C. Evans, Partial differential equations: Graduate studies in Mathematics. American
Mathematical Society 2, 1998.

12. M. Falcone and R. Ferretti, Semi-Lagrangian Approximation Schemes for Linear and
Hamilton-Jacobi Equations, Applied Mathematics series, SIAM, 2013.

13. R.A. Howard, Dynamic Programming and Markov Processes, The MIT Press, Cam-
bridge, MA, 1960.

14. A. Alla, M. Falcone, and D. Kalise. An efficient policy iteration algorithm for dynamic
programming equations. PAMM 13.1 (2013): 467–468.

15. L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations, Math.
Oper. Res. 18 (1993): 227–244.

16. L. Qi and J. Sun, A nonsmooth version of Newton’s method, Math. Program., 58 (1993):
353–367.

17. Z. Rao and H. Zidani, Hamilton-Jacobi-Bellman Equations on Multi-Domains,
Birkhauser Basel. Volume 164, (2013).

18. sc M. Santos and J. Rust. Convergence properties of policy iteration. SIAM Journal on
Control and Optimization 42 6 (2004): 2094-2115.

19. P. Souganidis, Approximation schemes for viscosity solutions of Hamilton-Jacobi equa-
tions. Journal of differential equations 59 1 (1985): 1–43.

20. M. Sun, Domain Decomposition algorithms for solving Hamilton Jacobi-Bellman equa-
tions, Num. Funct. Analysis Opt. 14, (1993) pp.145–166.

21. M. Puterman and S. L. Brumelle. On the convergence of policy iteration in stationary
dynamic programming.” Mathematics of Operations Research 4.1 (1979): 60–69.

22. S.Z. Zhou and W.P. Zhan, A new domain decomposition method for an HJB equation.
J. Comput. Appl. Math. 159(1), (2003) pp. 195–204.

	Introduction
	Classic Howard's algorithm
	Domain Decomposition and Parallel version
	Performances, tuning parameters
	Extensions and Special Cases
	Conclusions

