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Abstract— Karamouzas et al. [21] presented strong
evidence that collision avoidance is one of the main
interaction rules in pedestrian dynamics. In other words
individuals actively anticipate the future to predict a
possible collision time and adjust their velocity accord-
ingly. However they show no intention to change their
direction when walking close to each other in the same
direction. This collision avoidance behavior initiates com-
plex dynamical phenomena, an assumption confirmed by
analyzing experimental data and reproduced in numer-
ical simulations. The simulations show that already a
simple dynamical system model, with forces depending on
the estimated hitting time, reproduces complex dynamics
such as velocity alignment.
In this paper we propose an optimal control model,
that is based on the idea of a two-player pursuer
evader game. We shall use Bellman’s approach to study
the embedded game for collision avoidance and discuss
related theoretical as well as numerical aspects.

I. INTRODUCTION

Pedestrian dynamics can be described on various
scales: on the microscopic level by specifying the
motion of every single individual according to certain
interaction rules between them and their environment.
On the meso- and macroscopic level by considering
the distribution of all particles with respect to their
position and velocity and describing their evolution
using differential equations. The latter approach is
mathematically more amenable, but only valid for
large pedestrian groups. Microscopic models allow for
the description of fewer individuals, but analyzing the
overall dynamics is often not possible. The dynamics
are driven by specifically stated interaction laws and
are therefore more intuitive. Depending on the situa-
tion considered one has to weigh the pros and cons of
either level to select the appropriate description.

On the microscopic level force based models, such
as the social force model by Helbing [17], are a
popular choice. These models correspond to first or
second order dynamical systems, in which the position
and velocity change according to given interaction
forces. In differential games these forces correspond
to the solution of an optimal control problem - each
individual is assumed to be rational, basing its optimal
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strategy on minimizing a given cost functional. These
cost may relate to the kinetic energy, exit time or
collision avoidance, cf. e.g. [18], [11].

In mesoscopic models the evolution of the distribu-
tion of individuals with respect to their position and
velocity is given. Interactions between agents are mod-
eled by ’collisions’, see for example [25]. Macroscopic
models are often based on conservation laws, describ-
ing the evolution or change of certain quantities such
as the density or momentum in time, cf. [26], [13].
Recently mean field game approaches, cf. [19], [23],
have been proposed to model the evolution of large
pedestrian crowds, see [22]. These models are closely
related to parabolic optimal control approaches, in
which the optimal strategy of the crowd is determined
by minimizing a given cost. For a detailed overview on
different modeling approaches in pedestrian dynamics
we refer to [8].

Experiments indicate that repulsion between indi-
viduals is not only related to their physical distance -
two pedestrians walking with similar speed in the same
direction effect one another less than two individuals
moving towards each other. This intuitive assumption
was recently confirmed by Karamouzas et al in [21].
In addition to their experimental findings they present
a force based model, in which repulsion between
individuals is directly related to the estimated collision
time. The estimated collision time is calculated by
extrapolating the actual trajectories and speeds in time.

In the present work we propose a different micro-
scopic approach to incorporate collision avoidance be-
havior in pedestrian dynamics. We assume that individ-
uals act rationally by minimizing/maximizing certain
costs. The costs are related to the anticipated collision
time. This problem corresponds to an optimal control
problem, in which the dynamics of each individual are
given by a second order dynamical system. We con-
sider the case of non anticipating strategies; i.e. each
individual knows its current position and velocity only
and adjusts them with respect to the current states of
all other individuals. These methods are well known in
differential games, see [20], [7]. They provide a global
technique for finding the value function of the problem
(which is the potential linked to the optimal strategies
of the players) using the corresponding Hamilton-
Jacobi-Isaacs equation. Recently these techniques were
proposed to solve collision avoidance problems in



traffic flow problems, see for example [24], [28]. The
advantage of this approach is the global optimality
and the possibility to compute off line solution due
to the open-loop nature of the control. On the other
hand a well known challenge in these problems is the
’curse of dimensionality’. For example in the multi-
player case, the optimal strategy for each player is
obtained by solving a partial differential equation in
a domain of dimension 4d × (n − 1), where d is the
space dimension and n the number of players. In this
paper we propose a sub-optimal technique, namely
each individual adjusts its position and velocity by
calculating the optimal strategy with respect to the
estimated collision time with respect to every other
individual separately.

This paper is organized as follows: in section II
we present a collision avoidance framework and its
mathematical background. Section III discusses the
integration of boundaries and additional objectives
in the model. Numerical experiments illustrate the
complex behavior of the proposed model in section
IV. We conclude by discussing our findings in section
V.

II. COLLISION AVOIDANCE

We start by discussing collision avoidance strategies
for differential game models. We consider the
situation, in which each player bases its decision on
the actual state of all other players. This corresponds
to a non-anticipating strategy, see [14] as well as [6],
[5] for more details. We shall study the behavior of
the system in case of general and reduced dynamics
of a single agent and discuss the notion of optimality
in this context.

A. General dynamics

Let us consider an n−agent system described by the
following state equations: ẋi = f(xi, vi)

v̇i = g(xi, vi, ai),
(xi(0), vi(0)) = (x0

i , v
0
i ) = z,

(1)

where i ∈ {1, ..., n} denotes the i−th player with
position and velocity (xi, vi) ∈ R2d. Throughout this
paper we make the following assumptions for the
functions f and g:

(H1)
f : Rd × Rd → Rd
g : Rd × Rd ×A→ Rd

}
are continuous

and Lipschitz continuous w.r.t. (xi, vi).

The parameter ai ∈ A is the control chosen from the
compact set A. In the following we refer to yi(t) :=
(xi(t), vi(t)) as the solution to system (1) for a control
ai = ai(t).

We start by discussing the optimal collision avoidance
strategy in the case of two players, i.e. n = 2 and
we shall use the notation P1 and P2 to refer to either
one of them. In this simple situation P1 determines its
optimal strategy given the dynamics of P2. Its objec-
tive corresponds to staying within a certain distance to
player P2. Hence we define the set G:

G :=
{
y = (x, v) ∈ Rd × Rd s.t. ‖x‖2 ≤ ρ

}
,

where ρ > 0 denotes to the minimal distance P1 wants
to maintain. Then the corresponding optimal control
problem can be written as follows: given two sets of
initial data y1(0) and y2(0) determine

sup
ϕ∈Φ

inf
a2∈A

∫ +∞

0

e−λtχG(y1(t)− y2(t), t) dt , (2)

subject to (1).

In (2) the parameter λ > 0 denotes the temporal
discount factor and the function χ is defined by

χG(y(t), t) :=

{
0 if ∃t̄ ≤ t s.t. y(t̄) /∈ G
1 elsewhere.

Note that min{t|χG(y(t), t) = 0} corresponds to the
first time when the trajectory y(t) enters the set G. The
space Φ is the closed-loop functional space of the non-
anticipating strategies (chosen by P1), in response to
the optimal strategy by P2. The space of the control
functions is set to:

A := {a(·) : [0,∞)→ A |
a(.) meas. and a(t) ∈ A a.e. }.

The strategy space Φ is defined as

Φ := {ϕ : A → A|ϕ is non-anticipative}.

We shall use the following definition for non-
anticipative behaviour: for any t′ ≥ 0, and two given
controls ā2(.) and â2(.) ∈ A,

ā2(t) = â2(t) a.e. t ∈ [0, t′] =⇒
ϕ(ā2(.))(t) = ϕ(â2(.))(t) for a.e. t ∈ [0, t′] .

Then the corresponding value function of (2) (obtained
using classical results from optimal control theory, cf.
[3]) is given by

u(z) = sup
ϕ∈Φ

inf
a2∈A

∫ +∞

0

e−λtχG,t(y1(t)− y2(t), t) dt ,

is the viscosity solution of the following Hamilton-
Jacobi-Isaacs equation:

λu(z) + min
a1∈A

max
a2∈A
{−(f(x1, v1), g(x1, v1, a1)

f(x2, v2), g(x2, v2, a2)) ·Du(z)} = 1

z ∈ R4d \ G,
u(z) = 0, z ∈ G.

(3)



The existence of a viscosity solution for this equation
is guaranteed by hypothesis H1. To ensure uniqueness
we need the additional assumption that

(H2) The viscosity solution u of (3) is continuous in
∂G.

Then player P1 determines its the best strategy
by assuming that it knows the actual position and
velocity of P2 (but not the future). Such control can
be expressed as a feedback map (open-loop control)
depending by the state of the system composed by the
two players. Hence its control is given by

a1(z) ∈ argminmax
a2

{−(f(x1, v1), g(x1, v1, ·),
f(x2, v2), g(x2, v2, a2)) ·Du(z)}.

(4)

The design of the control follows the so called synthe-
sis problem related to differential games. The selected
choice is optimal to avoid collisions and satisfies the
Pontryagin’s optimality conditions , cf. [10], [27].
Note that the value function of a differential game
corresponds to a Nash equilibrium [7]: the control is
the best answer to the choice of its opponent. In (1)
we considered the case of indistinguishable players,
which follow the same dynamics f and g. Note that
this analysis can be easily generalized (for the cost of
readability) to describe agents with different dynamical
features, such as pedestrians with different speeds,
cyclists or cars.
In the case of multiple agents we use the solutions of
each separate 2−player game using the minimal value
function, i.e.

ui(z) = min
j
ui,j(z), (5)

where ui,j(z) is the solution of the i vs. j player game
to (3), j = 1, . . . n, j 6= i. Hence each player adjusts
its velocity with respect to the agent with the smallest
collision time. Note that this choice corresponds to a
special projection of the high-dimensional solution (of
the multi-agent problem), which may not be optimal.
The discussion about optimality in the case of multi-
player dynamics is out of the scope for this short paper,
we refer to [16] for further details.

B. Reduced dynamics
Next we consider system (1) in a special case of

reduced dynamics. This problem is mathematically
more amendable and shall serve as an educational
example to understand the underlying dynamics and
relate optimal control approaches to force based mod-
els. Hence we study:

ẏi =

{
ẋi = vi
v̇i = ai.

A := Bd(0, 1). (6)

Here Bd(0, 1) denotes the closed ball centered around
the origin with radius 1. In this case we can calculate
the value function of (3) analytically.

Again we consider the interactions between two
players only (i−player and j−player). Due to the spe-
cial structure of the dynamics in (6), i.e. the dynamics
do not depend on the position of each player, we can
study the system with respect to the relative position
of the agents (reduced dynamics in [4]). Let

s := xi − xj and q := vi − vj .

Then (3) reduces to

λu(s, q) + min
ai∈A

max
aj∈A
{−(q, ai − aj) ·Du(s, q)} = 1.

In this case the computation of the nonlinear part
corresponds to

λu(s, q)− (q, 0) ·Du(s, q) = 1

where Du := (∇su,∇qu) and ∇su denotes the
components of the gradient with respect to s. Hence
we have

−q · ∇su = 1− λu.

With the notation | · | := ‖ · ‖2, a Lipschitz continuous
solution of such equation is given by

u(s, q) :=


1
λ (1− e−λτ(s,q))

if ∃t > 0 s.t. |s+ tq| ≤ ρ
0 if |s| ≤ ρ
1
λ elsewhere,

where τ(s, q) := − s·q+
√

(s·q)2−|q|2(|x|2−ρ2)

|q|2 . Note that
an explicit collision condition equivalent to the one
stated above is

ρ ≥

√
|x|2 − (x · v)2

|v|2
. (7)

The solution u is also the unique viscosity solution,
if the theoretical assumptions (H1-H2) are satisfied.
In this case the control corresponds (independently of
the opponent player) to

ai := − ∇qu
|∇qu|

,

if |∇qu| 6= 0. In the case of no collision, i.e. condition
(7) is not satisfied, we have ai = 0.

Remark 1: The problem with reduced dynamics (6)
is related to the force based model in the original work
of Karamouzas et al. [21]. Moreover our framework
provides an optimal control interpretation to their
approach. Karamouzas et al. suggested that the forces
between individuals depend on their estimated colli-
sion time. The estimated collision time ti,j of player
i and player j is based on the extrapolation of their
current trajectories and velocities and the assumption
that every player will continue its trajectory along this



line. The hitting time can be computed explicitly by
the following formula:

ti,j =


0 if |xi − xj | < ρ,
+∞ if no collision,

− (xi−xj)·(vi−vj)+
√

∆
|vi−vj |2 , elsewhere.

∆ := ((xi − xj) · (vi − vj))2

−|vi − vj |2(|xi − xj |2 − ρ2).

Then the repulsive forces between the individuals
correspond to the gradient of the function

Ei :=
∑
j 6=i

−k̂ e− ti,jτ0
tpi,j

 , (8)

where k̂, p, τ0 ∈ R+ are modeling parameters. Note
that there is an evident link between the two models:
in the case n = 2 the value function u and the
potential of the force model Ei (8) are equivalent
up to a translation constant if λ = 1/τ0, k̂ = τ0,
p = 0. In the case of multiple players, i.e. n > 2, the
difference in the models corresponds to the choice of
the potential. In the optimal control approach it related
to the minimum collision time of all players, in the
force based model to their sum.

III. CONFINEMENT AND TARGETS

Spatial and velocity restrictions are natural con-
straints. Especially in pedestrian dynamics confined
spaces such as rooms with exits or velocity bounds
are a common assumption. In this section we discuss
how to include spatial constraints or how to determine
the direction to an exit, which is important in the
numerical experiments.
In the following we consider problem (2) on the open
domain Ω ⊂ Rd × Rd. The analytic properties of this
problem were studied by various authors, for a detailed
discussion we refer to [12], [9].

An important aspect of optimal control problems on
bounded domains is the viability of the dynamics. A
sufficient and necessary condition for the viability on
Ω (with a sufficiently smooth boundary ∂Ω) is given
by:

sup
ai∈A

inf
aj∈A
{(f(xi, vi), g(xi, vi, ai), f(xj , vj),

g(xj , vj , aj)) · η(xi, vi, xj , vj)} ≤ 0,

for every (xi, vi, xj , vj) ∈ ∂Ω × ∂Ω, where
η(xi, vi, xj , vj) denotes the exterior normal to ∂Ω ×
∂Ω, cf. e.g. [2]. This condition, with (H1) and (H2)
is sufficient to guarantee the well posedness of the
problem.

Next we discuss how to determine the optimal
strategy to reach a target T , for example an exit
T ⊂ ∂Ω or a certain position in space T ⊂ Ω̄. Then

the shortest path to a target, is given by the gradient
of the potential w : Ω → R (Ω := Rd × Rd in the
unconstrained case), viscosity solution of the Eikonal
equation

max
a∈A
{−(f(x, v), g(x, v, a)) ·Dw(x, v)} = 1

(x, v) ∈ Ω \ T
w(x, v) = 0 (x, v) ∈ T .

We reiterate that the Eikonal equation gives the value
function of the minimum time problem to reach the
target T i.e. the optimal control problem

Find w(y) := inf
a∈A

∫ +∞

0

χ{y(t)/∈T } dt ,

subject to (1) with initial values y(0).

We propose that each agent determines its strategy
as the shortest path to the exit while trying to avoid
collisions with the other players, i.e.

Pi := wi(x, v) + k(ui(x, v)), (9)

where k is a model parameter which weighs the
relevance of collision avoidance against the optimal
exit strategy. Note that each agent can have a different
potential wi, i = 1, . . . n, which may correspond to
different objectives.

IV. NUMERICAL EXPERIMENTS

In this section we shall illustrate the behavior of
the proposed optimal control approach with various
numerical experiments. We shall observe complex
dynamics, such as milling or ’freezing’ in case of
bottlenecks. In classical force based models milling
emerges from the balance between short range repul-
sion and long range attraction. This is not the case in
our approach - milling behavior results from collision
avoidance and spatial restrictions only.
The numerical simulation are based on the reduced
dynamics (6), which are easier from the computational
point of view but complex enough to obtain non
trivial solutions. The solution of the Hamilton-Jacobi
equations is based on the policy iteration algorithm [1]
using Semi-Lagrangian approximation schemes [15].

In our first test we consider a group of n = 200
pedestrians subject to the confinement potential

w(x) = max(0, x2
1 + x2

2 − 1).

The initial state of every agent (both position and
speed) is chosen randomly in the set [−3, 3]2 ×
[−1, 1]2. We observe mill formation for different sets
of parameters, see Figure 1. Mill formation is closely
related to the number of the agents, the physical space
available and to confining potential. In Figure 2 we
illustrate the tendency towards synchronization: let



Fig. 1. Milling: initial configuration and state after t = 30s for
k = 2, ρ = 0.03, λ = 1, n = 200.The level sets correspond to the
confinement potential.

θ̇i(t) denote the angular velocity of the i−player and
θ̇m(t) the average over all agents; we evaluate

Σ(t) :=

n∑
i=1

|θ̇i(t)− θ̇m(t)|,

to study the deviation of the individual angular velocity
from the average. In Figure 2 we see that the initially
randomized motion aligns along circles and stabilizes
with a certain periodicity around this equilibrium state.
We compare this behavior for different choices of k;
particles align in all three cases, but the time towards
stabilization is different.

Another situation of interest is when two population
with different objectives are interacting in a restricted
space. We model this with two potentials

w1(x) = x1 + max(|x2| − 0.8, 0),

w2(x) = −x1 + max(|x2| − 0.8, 0),

Fig. 2. Evolution of the deviation from the average angular velocity
for n = 200 individuals.

Fig. 3. Formation of directional lanes: state of the system after
t = 10s, k = 2, ρ = 0.03, λ = 1, n = 200.

related to two distinct populations. Note that in our
approach collision-avoidance between two agents is
completely independent of the belonging to one group
or the other. The initial conditions correspond to a
random configuration. We assumed periodic conditions
on the left and right boundaries of the domain. In
this case - Figure 3 - we observe lane formation,
i.e the formation of directional lanes. The number of
lanes depends on the parameter k, i.e. the stronger the
collision-avoidance tendency the larger the number of
lanes. If we run the simulation with an obstacle in
the middle of the domain (simply adding max(1 −
x2

1 − x2
2, 0) to potentials w1 and w2) the dynamics of

the groups converge to two different equilibria, which
depend on the initial configuration. These semi-stable
configurations are:

1) either group bypasses the obstacle on one side;
2) one population passes the obstacle on both sides,

while the other one is confined behind the ob-
stacle. A condition similar to so-called freezing.



Situation 2 is shown in Figure 4, where the the red
particles bypass the obstacle on both sides while the
blue particles hardly move from the right side of the
domain.

Fig. 4. Congestion configuration caused by an obstacle: state of
the system after t = 10s, k = 2, ρ = 0.03, λ = 1, n = 200.

V. CONCLUSION

In this paper we propose a differential game ap-
proach to model collision avoidance in pedestrian
crowds. We discuss the general modeling setup and
illustrate the behavior of the model with various nu-
merical simulations. These investigations shall serve
as a starting point for further research in different
directions.
The first is related to the notion of optimality in
multi-player games. As discussed in [16] we cannot
guarantee optimality in general, but only in situations
in which the optimal trajectory does not touch any
switching point of the (5). In other words a configu-
ration where the time of hitting with respect of two
different agents is coincident and minimal. Another
point is to consider general functions f and g to
describe more complex situations such as mixed popu-
lations, multi-conflicting goals etc. The computational
complexity of solving (3) in the case of higher space
dimension poses an additional challenge for further
research.
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