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ERROR ESTIMATES FOR THE EULER DISCRETIZATION OF AN
OPTIMAL CONTROL PROBLEM WITH FIRST-ORDER STATE

CONSTRAINTS∗

J. FRÉDÉRIC BONNANS† AND ADRIANO FESTA‡

Abstract. We propose some error estimates for the discrete solution of an optimal control
problem with first-order state constraints, where the trajectories are approximated with a classical
Euler scheme. We obtain order 1 approximation results in the L∞ norm (as opposed to the order
2/3 results obtained in the literature). We assume either a strong second-order optimality condition
or a weaker formulation in the case where the state constraint is scalar and satisfies some hypotheses
for junction points, and where the time step is constant. Our technique is based on some homotopy
path of discrete optimal control problems that we study using perturbation analysis of nonlinear
programming problems.
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1. Introduction and discussion of literature. Numerical methods for the
resolution of an optimal control problem are based on a finite-dimensional approxi-
mation, generally obtained through a discretization of the trajectory and a piecewise
constant or polynomial control. Obtaining error estimates for such approximations is
a key point in this issue.

Such problems began to be analyzed in the 1970s. They dealt with convergence
of a discrete optimal control solution; see for example [17, 11, 12, 30]. Other results
of convergence, provided using modern variational techniques, are also found in [34];
a survey of the results in this area is [13].

In this paper we focus on the case of pure state constraints, a case which presents
some special difficulties. In particular, it is known that when the constraint qualifi-
cation holds and the Lagrangian verifies a local condition of coercivity, the discrete
problem obtained with an Euler scheme has a solution for a sufficiently fine mesh, and
the corresponding Lagrange multipliers are at distance O(h̄) in the L2 norm, where
h̄ is the maximal discretization step, from the continuous solution/multiplier. This
important result is due to [16].

The second-order optimality conditions involve neighborhoods in the L∞ norm
but give only growth estimates in the L2 norm. This is the so-called “two-norm
discrepancy” [26]. So, it is not surprising to get error estimates in the L2 norm.
Yet it is useful to recover L∞ estimates. For problems without state constraints, it
has been shown that standard numerical techniques such as the Euler discretization
[14, Thm. 6] or a discrete shooting formulation [27] provide an approximation of the
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solution of the problem where its L∞ error can be estimated by a term of order h̄.
For state constrained problems, the situation is more involved. One possibility is to
work in a nonlinear space of Lipschitz continuous functions with bounded Lipschitz
constants. In this setting, the L2 convergence implies L∞ convergence. This is the
method proposed in [16]. Here the authors develop a Lipschitz stability result in L2 for
a perturbation of the linearized Euler discretization, which leads to an optimal error
estimate O(h̄) in L2. Using a reverse Hölder inequality [15, Lem. 3.1] for Lipschitz
functions, this implies an O(h̄2/3) estimate in L∞. In the same work the authors
observe that such an estimate is not optimal (cf. [16, sect. 10]).

In this paper, we obtain a tighter O(h̄) error estimate for the L∞ norm, assuming
either (i) a strong second-order optimality condition, similar to the one in [16] (but
we allow a variable time step, whereas in [16] the time step was constant), or (ii)
a weaker second-order optimality condition, in the case when the state constraint is
scalar, structural hypotheses on arcs and junction points are assumed, and the time
step is constant (the precise statement of these hypotheses is in section 2.5).

In this second case our hypotheses allow us to obtain the stability of the extremals
(of the continuous problem) under a small perturbation; see [4]. We obtain a similar
result for the discretized problem. By contrast, for a vector state constraint we are
not aware of such stability results, even in the continuous case. This suggests that it
may not be easy to obtain the stability of the extremals after discretization without
a strong second-order optimality condition. This is an interesting open question that
we leave for future work, as well as the case of higher order state constraints.

1.1. Structure of the paper. In section 2 we introduce the problem and the
assumptions adopted in the paper, and we state our main result (Theorem 2.5): an
O(h̄) uniform error estimate for the control, state, costate, and multiplier. Section
3 presents the homotopy path on which our analysis is based. For each parameter
θ ∈ [0, 1] of the path, we define a pertubation (Pθ) of the discretized optimal control
problem and we construct a path of solutions of the corresponding optimality system.
For θ = 0, (Pθ) coincides with the discretized optimal control problem, and for θ = 1
a solution of the (perturbed) discrete optimality system is obtained from the solution
of the continuous time problem. Through the study of the regularity of each problem
(Pθ) (section 4) and checking that, under appropriate hypotheses, the homotopy
path has bounded derivatives (in a sense clarified in section 5), we can establish the
announced convergence estimates for the discrete problem. More precisely, due to
some coercivity properties of the Hessian of the Lagrangian, we first obtain a bound
in the L2 norm from which respective estimates in the L∞ norm follow. We use there
the fact that the state constraint is of first order. Section 6 is dedicated to a simple
numerical test. The numerical test is in accordance with our theoretical result and it
confirms the tightness of the estimate. Appendices A–D contain some complementary
results not essential for the comprehension of the core of the paper.

1.2. Notations. By Rn we denote the n-dimensional Euclidean space. Its dual
(whose elements are row vectors) is denoted by Rn∗. By ∇, ∇u, etc., we denote the
gradient or partial gradient with respect to u, which are column vectors, in by contrast
to the derivatives denoted by, for example, Dg(x) or g′(x) depending on the context,
which are identified as row vectors if g is scalar valued. The Lagrange multipliers,
including costate variables, are considered as dual elements and are represented by
row vectors.

By C([0, T ]) we denote the space of real continuous functions over [0, T ], endowed
with the supremum norm. It is known that its topological dual can be identified
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with the space M[0, T ] of regular, finite Borel measures over [0, T ]. Let BV ([0, T ])
denote the space of bounded variation functions over [0, T ], and let BVT ([0, T ]) be
the subspace of such functions with value 0 at time T . Any continuous linear form on

C([0, T ]) is of the form f 7→
∫ T
0
f(t)dµ(t) with µ ∈ BVT ([0, T ]). By W 1,s(0, T ;Rn)

with s ∈ [1,∞], we denote the space of function in Ls(0, T ;Rn), with weak derivatives
in Ls(0, T ;Rn). Moreover, H1(0, T ;Rn) := W 1,2(0, T ;Rn).

In the analysis we will define h̄ as the greatest time step of the discretized problem,
and θ ∈ [0, 1] as a homotopy parameter. When writing expressions such as O(1) or
O(h̄), we mean that the corresponding constants are uniform over θ for h̄ small enough.

2. The continuous problem and its discretization. We consider the follow-
ing pure state constrained optimal control problem:

(2.1) (P)


Minimize φ(y(T )); subject to
ẏ(t) = f(u(t), y(t)) for a.a. t ∈ [0, T ];
y(0) = y0;
gi(y(t)) ≤ 0, t ∈ [0, T ], i = 1, . . . , r,

where the initial condition y0 belongs to Rn, the control u(t) and the state y(t) belong
to the spaces U := L∞(0, T ;Rm) and Y := W 1,∞(0, T ;Rn), respectively, and gi is the
ith component of the vector g. Moreover, we assume the following.

(A0) The mappings φ : Rn → R, f : Rm × Rn → Rn are of class C2 with locally
Lipschitz second-order continuous derivatives and g : Rn → Rr is of class
C3 with locally Lipschitz third derivatives. In addition, the initial condition
y0 ∈ Rn satisfies gi(y0) < 0, i = 1, . . . , r.

A trajectory of (P) is an element (u, y) of U×Y, the solution of the state equation
in (2.1). It is said to be feasible if it satisfies the state constraint, and then we say that u
is a feasible control. We say that the feasible trajectory (ũ, ỹ) is a local solution of (P)
if it minimizes φ(·) over the set of feasible trajectories (u, y) satisfying ‖u− ũ‖∞ ≤ δ
for some δ > 0. We assume the following.

(A1) The nominal trajectory (ū, ȳ) is a local solution of (P) in U × Y, and ū is a
continuous function of time.

The hypothesis of continuity of the control may seem restrictive. However, it hap-
pens that, even for unconstrained problems, the analysis of second-order optimality
conditions is quite involved when the control is discontinuous; see, for instance, [29,
sect. 14].

The first-order time derivative of the state constraint is the function

(2.2) g(1) : Rm × Rn → Rr, (u, y)→ g′(y)f(u, y).

Note that g(1)(ū(t), ȳ(t)) is the time derivative of g(ȳ(t)). Denote the set of active
constraints at time t by

A(t) := {i = 1, . . . , r | gi(ȳ(t)) = 0}.

We say that the trajectory (ū, ȳ) has regular first-order state constraints if the follow-
ing holds.

(A2) There exists αg > 0 such that, for all t ∈ [0, T ] and λ ∈ Rr∗ verifying λi = 0
if i 6∈ A(t), the following holds:

|λ| ≤ αg

∣∣∣∣∣∣
∑
i∈A(t)

λi∇ug(1)i (ū(t), ȳ(t))

∣∣∣∣∣∣ .
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The Hamiltonian function, where p ∈ Rn∗ and (u, y) ∈ Rm × Rn, is defined by

H[p](u, y) := pf(u, y).

With this classical notation we view the Hamiltonian as a function of (u, y),
parametrized by p, so that, for example, DH[p](u, y) denotes the derivative of the
Hamiltonian with respect to (u, y).

For i = 1 to r, we define the contact set for the ith constraint by

Ii := {t ∈ [0, T ]; gi(ȳ(t)) = 0}.

We say also that the i-constraint is active at time t if t ∈ Ii; otherwise the constraint is
inactive. A maximal open interval (a, b) of Ii (resp., of [0, T ] \ Ii) is called a boundary
arc (resp., interior arc). The left and right endpoints of a boundary arc are called
entry and exit points, respectively. We call the union of entry and exit points junction
points.

2.1. Optimality conditions. We next introduce first-order extremals.

Definition 2.1. A trajectory (ū, ȳ) is a first-order extremal of (P) if there exist
η̄ ∈ BVT ([0, T ],Rr) and p ∈ BV ([0, T ],Rn∗) such that

˙̄y(t) = f(ū(t), ȳ(t)) a.e. on [0, T ], ȳ(0) = y0,(2.3)

− dp̄(t) = p̄(t)fy(ū(t), ȳ(t))dt+

r∑
i=1

g′i(ȳ(t))dη̄i(t), p̄(T ) = φ′(ȳ(T )),(2.4)

0 = Hu[p̄(t)](ū(t), ȳ(t)) = p̄(t)fu(ū(t), ȳ(t)) for a.a. t ∈ [0, T ],(2.5)

0 ≥ gi(ȳ(t)), dη̄i ≥ 0,

∫ T

0

gi(ȳ(t))dη̄i(t) = 0, i = 1, . . . , r.(2.6)

We say that η̄ is the Lagrange multiplier associated with the state constraint and that
p̄ is the corresponding costate.

Theorem 2.2. Let (A0)–(A2) hold. Then a local solution (ū, ȳ) of (P) is a
first-order extremal, with unique associated costate and Lagrange multiplier (p̄, η̄).

Proof. see, for instance, [6, Thm. 2.5].

The linearized state equation at (ū, ȳ) is, for v in V := L2(0, T ;Rm),

(2.7) ż(t) = f ′(ū(t), ȳ(t))(v(t), z(t)); z(0) = 0.

Its solution in Z := H1(0, T ;Rn) is denoted by z[v].

2.2. A key result. The next assumption is quite common in these problems
and it plays a crucial role in the analysis. We assume that problem (P) has a local
solution (ū, ȳ) with associated multipliers p̄ and η̄ satisfying the following condition.
(A3) (Strengthened Legendre–Clebsch condition) There exists α > 0 such that

(2.8) Huu[p̄(t)](ū(t), ȳ(t))(v)2 ≥ α|v|2 for all v ∈ Rm for a.a. t ∈ [0, T ].

Here and below we use the compact notation (v)2 instead of (v, v). We recall that the
continuity of the control was stated in (A1).

Observe that, when ū and η̄ are Lipschitz continuous, denoting by ν̄(t) the deriva-
tive of η̄, the costate equation (2.4) can be written in the form

(2.9) − ˙̄p(t) = p̄(t)fy(ū(t), ȳ(t))+

r∑
i=1

ν̄i(t)g
′
i(ȳ(t)) a.e. on (0, T ); p̄(T ) = φ′(ȳ(T )).
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Lemma 2.3. Let (A0)–(A3) hold. Then both ū and η̄ are Lipschitz continuous
and (2.9) holds.

Proof. The result is proved in [18, Thm. 4.2] for the case of a convex problem,
using a lemma on “compatible pairs.” It was generalized in [1], using the same lemma,
to nonconvex problems with state constraints of any order (see also [21] for the case
of a second-order state constraint).

In the rest of the paper we assume (A0)–(A3) as a standing hypothesis.

2.3. Alternative formulation. We recall the definition of the spaces V :=
L2(0, T ;Rm) and Z := H1(0, T ;Rn), respectively. We use also the notations

H[t] := H[p̄(t)](ū(t), ȳ(t)); g[t] := g(ȳ(t)), f [t] := f(ū(t), ȳ(t));

with a similar convention for their partial derivatives, for example, Hu[t] := Hu[p̄(t)]
(ū(t), ȳ(t)). In addition, we denote by D2H[t] the Hessian of H[p̄(t)](ū(t), ȳ(t)) with
respect to (u, y). More generally, writing [t] as the argument of a function means that
this function is to be evaluated over the nominal trajectory (ū, ȳ) and, where it is
necessary, over the associated multipliers (η̄, p̄). For simplicity of notation, we write
in what follows D2H[t](v, z)2 instead of D2H[t]((v, z), (v, z)).

Let us define the quadratic form over V × Z, where z = z[v]:

(2.10) Ω(v) :=

∫ T

0

(
D2H[t](v(t), z(t))2 +

r∑
i=1

ν̄i(t)g
′′
i [t](z(t))2

)
dt+ φ′′(ȳ(T ))(z(T ))2,

and the set C(ū) of strict critical directions is defined as those v ∈ V such that, for
z = z[v],

ż = fu(ū, ȳ)v + fy(ū, ȳ)z on [0, T ]; z(0) = 0,(2.11)

g′i(ȳ(t))z(t) = 0, t ∈ Ii, i = 1, . . . , r,(2.12)

φ′(ȳ(T ))z(T ) = 0.(2.13)

We discuss in Appendix A the relation of this set with the standard critical cone.
Let us next recall the alternative formulation of the optimality conditions, due

to [10] and [22], and put on a sound mathematical basis by [25]. (See also [4, 31].)
We need this alternative formulation in section 5 and Appendix C. The alternative
Hamiltonian, where g(1) is given in (2.2), (p1, η̄1) ∈ Rn∗×Rr∗, and (u, y) ∈ Rm×Rn,
is defined by

(2.14) H̃[p1, η̄1](u, y) := p1f(u, y) + η̄1g(1)(u, y).

Now define the alternative costate and multiplier of the state constraint:

p1(t) := p̄(t) +

r∑
i=1

η̄i(t)g
′
i(ȳ(t)); η̄1(t) := −η̄(t), t ∈ (0, T ).

We can check that

(2.15) − ṗ1(t) = H̃y[p1(t), η̄1(t)](ū(t), ȳ(t)) a.e. on (0, T ); p1(T ) = φ′(ȳ(T )).

At the same time, for any u ∈ R, we have that

H̃[p1(t), η̄1(t)](u, ȳ(t)) = (p1(t) + η̄1(t)g′(ȳ(t)))f(u, ȳ(t)) = H[p̄(t)](u, ȳ(t)).
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Consequently, the property of stationarity of the Hamiltonian with respect to the
control holds for the original Hamiltonian H if and only if it holds for the alternative
Hamiltonian H̃. The corresponding alternative quadratic form, where z = z[v], has
the following expression:

(2.16) Ω̃(v) :=

∫ T

0

D2H̃[t](v(t), z(t))2dt+ φ′′(ȳ(T ))(z(T ))2.

The form above involves the expression of D2g(1)[t], which is easily checked to be

(2.17) D2g(1)[t](v, z)2 = g(3)[t](f [t], z, z) + g′[t]fyy[t](v, z)2 + 2g′′[t](z, fy[t](v, z)).

The next lemma is a variant of some results by Bonnans and Hermant [4] and
Malanowski and Maurer [24].

Lemma 2.4. We have that Ω̃(v) = Ω(v) for all v ∈ V.

Proof. We give a short, direct proof in the case of a single constraint for conve-
nience. Using (2.17), we get that∫ T

0

ν̄(t)g′′[t](z(t))2dt =

∫ T

0

g′′[t](z(t))2dη̄(t) =

∫ T

0

D
(
g′′[t](z(t))2

)
η̄1(t)dt

=

∫ T

0

(
g(3)(ȳ(t))(f [t], z(t), z(t)) + 2g′′[t](z(t), ż(t))

)
η̄1(t)dt

=

∫ T

0

(
D2g(1)[t](v(t), z(t))2 − g′[t]f ′′[t](v(t), z(t))2

)
η̄1(t)dt.

Substituting p̄(t) = p1(t) + η̄1g′[t] in the expression of Ω(·), we obtain that

Ω(v) =

∫ T

0

(
(p1(t) + η̄1(t)g′[t])f ′′[t](v(t), z(t))2 + ν̄(t)g′′[t](z(t))2

)
dt

+φ′′(ȳ(T ))(z(T ))2

=

∫ T

0

(
p1(t)f ′′[t](v(t), z(t))2 + η̄1(t)D2g(1)[t](v(t), z(t))2

)
dt

+φ′′(ȳ(T ))(z(T ))2,

as it was to be proved.

2.4. Discrete version. We introduce now the Euler discretization of the opti-
mal control problem (2.1). Given some nonzero N ∈ N and a collection of positive

time steps hk, k = 0 to N − 1, such that
∑N−1
k=0 hk = T , we set

tk :=

k−1∑
i=0

hi, k = 0, . . . , N ; h̄ = max
k=0,...,N−1

hk,

and we consider the discretized problem

(2.18) (Pd)


Minimize φ(yN ); subject to
yk+1 = yk + hkf(uk, yk) for k = 0, . . . , N − 1;
y0 = y0;
g(yk) ≤ 0 for k = 1, . . . , N.
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We define, in analogy with the continuous formulation, by UN := (Rm)N the space of
discrete control variables (we use the same notation for the other functional spaces).
The associated Lagrangian function (with a proper scaling of the state constraint) is

φ(yN ) +

N−1∑
k=0

pk+1(yk + hkf(uk, yk)− yk+1) +

N∑
k=1

hkνkg(yk),

where νkg(yk) :=
∑r
i=1 νk,igi(yk). The first-order optimality conditions in qualified

form (that is, as discussed in the previous section with the multiplier of the cost func-
tion equal to 1; see, for example, [8, sect. 3.1]) for this finite-dimensional optimization
problem with finitely many equalities and inequalities, are

pk = pk+1 + hkpk+1fy(uk, yk) + hkνkg
′(yk), k = 0, . . . , N − 1,

pN = φ′(yN ) + hNνNg
′(yN ),

0 = Hu[pk+1](uk, yk), k = 0, . . . , N − 1,

gi(yk) ≤ 0, νk,i ≥ 0; νk,igi(yk) = 0, i = 1, . . . , r, k = 0, . . . , N.

(2.19)

Analogously to the continuous case, we define also the “integrated” multiplier for both
the normal and the alternative formulation:

(2.20) ηk := −
N∑
j=k

hkνk, η̄ := −η,

so that hkνk = ηk+1 − ηk = η̄k − η̄k+1 for k = 0, . . . , N . In the case when the
discretization step is constant we have h0 = h1 = · · · = hN−1.

2.5. Main result. As mentioned before, we present some results for two different
cases of interest. We need to preserve the coercivity of the Hessian of the Lagrangian
of the discretized problem over some subspace; this can be stated as a hypothesis, as
in [16], or obtained under hypotheses on the structure of the times at which a scalar
state constraint is active. So we will assume that one of the following two assumptions
holds where Ω(·) is defined in (2.10).

(A4) There exists a constant α > 0 such that

Ω(v) ≥ α
∫ T

0

|v(t)|2dt for all v ∈ V,

and all discrete steps are of the same order, i.e.,

(2.21) max
k

(hk/hk−1 + hk−1/hk) = O(1).

The condition on Ω is known to be a sufficient condition for local optimality in U ; see
[28, Thm. 2.4].

(A5) (Scalar constraint and finite structure) Assume that r = 1, the discretization
step is constant, the set I is a finite union of boundary arcs, the density ν is
uniformly positive over the boundary arcs, and there exists a constant α > 0
such that

(2.22) Ω(v) ≥ α
∫ T

0

|v(t)|2dt whenever v ∈ C(ū).
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We recall that the set of strict critical directions C(ū) was defined in (2.11)–(2.13).
Condition (A5) is known to be a sufficient condition for local optimality in U ; see [6,
Thm. 6.1(ii)]. We say that t ∈ [0, T ] is a touch point for the ith state constraint if it
is an isolated element of Ii. Note that (A5) excludes touch points.

Theorem 2.5. Let either (A4) or (A5) hold. Then there exists cE > 0 such that
the discrete optimal control problem (Pd) has a local solution (uh, yh) with associated
multipliers (ph, ηh) such that, for h̄ small enough,

(2.23) max
k

(
|yhk − ȳ(tk)|+ |uhk − ū(tk)|+ |phk − p̄(tk)|+ |ηhk − η̄(tk)|

)
≤ cE h̄.

The rest of the paper is devoted to the proof of this result; for that purpose we
need to introduce a homotopy path.

3. Homotopy path. We consider a family (Pθ), parametrized by θ ∈ [0, 1], of
finite-dimensional optimization problems, which can be viewed as a perturbation of
the discrete optimization problem (Pd):

(3.1) (Pθ)


Minimize φ(yθN ) + θ

∑N−1
k=0 h

2
k(δpky

θ
k + δuku

θ
k); subject to

yθk+1 = yθk + hkf(uθk, y
θ
k) + θh2kδ

y
k for k = 0, . . . , N − 1;

gi(y
θ
k) ≤ θh2kδ

g
k,i for k = 1, . . . , N,

yθ0 = y0, i = 1, . . . , r.

The given perturbation terms (δpk, δ
u
k , δ

y
k , δ

g
k) ∈ Rn∗ × Rm × Rn × Rr will be defined

later. For θ = 0, (Pθ) reduces to the discrete problem (Pd). Roughly speaking, we
choose the perturbation terms in such a way that the values of the solution (ū, ȳ) and
the multipliers of the original problem (P) satisfy the optimality system of (Pθ) at
discretization times tk when θ = 1. The expression of the optimality system of (Pθ) is

(3.2)


pθk = pθk+1 + hkp

θ
k+1fy(uθk, y

θ
k) + hkν

θ
kg
′(yθk) + θh2kδ

p
k,

pθN = φ′(yθN ) + hNν
θ
Ng
′(yθN ),

0 = Hu[pθk+1](uθk, y
θ
k) + θhkδ

u
k

for k = 1 to N − 1 with the complementarity conditions i = 1, . . . , r:

(3.3) gi(y
θ
k)− θh2kδ

g
k,i ≤ 0, νθk,i ≥ 0, νθk,i(gi(y

θ
k)− θh2kδ

g
k,i) = 0, k = 1, . . . , N.

Let us set

(3.4) fk := f(uθk, y
θ
k); Hk := H[pθk+1](uθk, y

θ
k).

For future reference, we note that the expression of the linearization of the costate
equation (3.2) is, denoting by (vθ, zθ, qθ, δνθ) the variables corresponding to the vari-
ations of (uθ, yθ, pθ, νθ)

qθk = qθk+1 + hkq
θ
k+1f

k
y + hk(vθk)THk

uy + hk(zθk)THk
yy

+ hkν
θ
k(zθk)T g′′(yθk) + hkδν

θ
kg
′(yθk)− θh2kδ

p
k,

qθN = (zθN )Tφ′′(yθN ) + hNν
θ
N (zθN )T g′′(yθN ) + hNδν

θ
Ng
′(yθN ).

(3.5)

The corresponding approximation of η̄ is (see (2.20))

(3.6) ηθk := −
N∑
j=k

hjν
θ
j , k = 0, . . . , N.
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Next define

(3.7)


ûk := ū(tk), ŷk := ȳ(tk), k = 0, . . . , N − 1,

p̂k := p̄(tk), ν̂k :=

∫ tk+1

tk

ν̄(t)dt, k = 1, . . . , N,

and accordingly

η̂k := η(tk+1) =

N∑
j=k

hkν̂k, k = 1, . . . , N.

For θ = 1 we define uθk and the associated state and multipliers by

(3.8) u1k = ûk, y1k = ŷk, p1k = p̂k, η1k = η̂k for k = 1, . . . , N.

We next define the perturbation terms (δuk , δ
y
k , δ

p
k, δ

g
k) by giving to them a value such

that the terms above are a solution of the discrete optimality system (3.2)–(3.3) for
θ = 1. Then δy is determined by the discrete state equation, δu and δp are determined
by (3.2)–(3.3), and we choose

(3.9) δgk,i =

{
gi(y

θ
k)/h2k if νθk,i > 0,

0 otherwise.

Lemma 3.1. We have that

(3.10) ‖δy‖∞ + ‖δu‖∞ + ‖δp‖∞ + ‖δg‖∞ = O(1).

Proof. If νk,i 6= 0, then max{gi(ȳ(t), t ∈ [tk, tk+1]} = 0. Since u is Lipschitz
continuous by Lemma 2.3, t→ g(ȳ(t)) has a.e. a bounded second derivative. So there
exists a c > 0 independent on h̄ such that gi(ȳ(tk)) ≥ −ch̄2 for all t ∈ [tk, tk+1], so
that ‖δg‖∞ = O(1).

Next, if w : [0, T ] → R is C1 with a Lipschitz continuous derivative of constant
L, then by a first-order Taylor expansion, we have that

|w(t+ h)− w(t)− w′(t)h| ≤ 1
2Lh

2.

By Lemma 2.3, the control is Lipschitz and, therefore, ẏ(t) is also Lipschitz continuous
(with respect to θ); we deduce that ‖δy‖∞ = O(1). For the costate equation, we have
that

p̄(tk+1) = p̄(tk)−
∫ tk+1

tk

p̄(t)fy[t]dt−
∫ tk+1

tk

ν̄(t)g′[t]dt.

Now since ū, ȳ, and p̄ are Lipschitz continuous,∣∣∣∣∫ tk+1

tk

p̄(t)fy(ū(t), ȳ(t))dt−
∫ tk+1

tk

p̄(tk+1)fy(ū(tk), ȳ(tk))dt

∣∣∣∣ = O(h2k),

and (in the parentheses below we recognize the expression of νk)∣∣∣∣∫ tk+1

tk

ν̄(t)g′[t]dt−
(∫ tk+1

tk

ν̄(t)dt

)
g′(ȳ(tk))

∣∣∣∣ = O(h2k).

It follows that ‖δp‖∞ = O(1). Since p is Lipschitz continuous and Hu[p̄(tk)](ū(tk),
ȳ(tk)) = 0, we deduce that ‖δu‖∞ = O(1). The conclusion follows.



454 J. FRÉDÉRIC BONNANS AND ADRIANO FESTA

In the rest of the paper some of the estimates presented are valid in a special neigh-
borhood of the continuous solution. To state them rigorously, we need the following
definition: given ε > 0 and θ ∈ [0, 1], we say that a solution Xθ := (uθ, yθ, yθ, ηθ) of
the optimality system (3.2) is an ε-neighboring solution, or an ε-n solution for short,
if we have that

(3.11) max
k

(
|yθk − ȳ(tk)|+ |uθk − ū(tk)|+ |pθk − p̄(tk)|+ |ηθk − η̄(tk)|

)
≤ ε,

and we define
θm := inf{θ ∈ [0, 1]; (3.2) has an ε-n solution}.

When θ = 1, the left-hand side of (3.11) has the value 0, and therefore θm is well
defined with a value in [0, 1].

Through the structure of the homotopy path problem we are now able to prove the
bounds shown in Theorem 2.5. In the following we analyze some technical points. In
particular, we use the fact that the ε-n solution of (Pθ) is uniformly Lipschitz continu-
ous (the result is found in section 4) and that such a solution is in an
ε-neighborhood of the solution of (P), X1 = (ū, ȳ, p̄, η̄); this point is discussed in
section 5.

Proof of Theorem 2.5. We prove in section 4 that, if h̄ is small enough, then for
θ ∈ [θm, 1], (uθ, yθ) is uniquely defined and has unique associated multipliers (pθ, ηθ),
and setting Xθ := (uθ, yθ, pθ, ηθ) (see section 5), θ → Xθ has a Lipschitz constant of
order h̄ in the uniform norm. It follows that, for a fixed ε > 0, ‖Xθ − X1‖∞ < ε
when h̄ is small enough, which gives a contradiction if θm > 0. Therefore, X0 is well
defined and ‖X1 −X0‖∞ = O(h̄), as was to be shown.

4. Regularity of the ε-n solutions. In this section we present some regularity
results for the ε-n solutions of the homotopy path problem.

Given an ε-n solution Xθ of (Pθ), we prove the uniqueness and the uniform
Lipschitz continuity of Xθ. In the following, when there is no possibility of confusion,
we drop θ as the upper index in the notation for better readability, keeping the
complete notation in the statements of the main propositions. We need to define

(4.1)

C1
k :=

pk
hk

(fu(uk−1, yk)− fu(uk−1, yk−1)) ,

C2
k := pk+1fy(uk, yk)fu(uk, yk),

∆u
k := hkδ

u
k − hk−1δuk−1

= (p̂k − p̂k+1)fu(ûk, ŷk)− (p̂k−1 − p̂k)fu(ûk−1, ŷk−1),

C3
k := C1

k − C2
k − θhkδ

p
kfu(uk, yk) + θ∆u

k/hk.

We may see the Cik = Cik(θ) as a function of θ; we call variation of these amounts
w.r.t. θ the amount |Cik(θ) − Cik(1)|. Observe that, since yk is uniformly Lipschitz
continuous with respect to θ, we have that

(4.2) (i) C1
k =

hk−1
hk

Huy[pk](uk−1, yk)f(uk−1, yk−1) +O(h̄); (ii) |C3
k | = O(1).

Lemma 4.1.
(i) Let Xθ be an ε-n solution of (Pθ). Then there exists cH > 0 not depending on

h̄ or θ such that, if ε > 0 and h̄ are small enough, then

(4.3)

r∑
j=1

νθk,j ∇ug
(1)
j (uθk, y

θ
k) = Hθk

(uθk − uθk−1)

hk
+ C3

k ,
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where Hθk satisfies

(4.4) |Hθk −Huu[pk](uk, yk)| ≤ cHε, k = 0, . . . , N − 1.

(ii) Let ε′ > 0. If in addition, the time step is constant, tk belongs to a boundary
arc (ta, tb), and tka + ε′ < tk−1 < tk < tkb − ε′, then the variation of C3

k (with respect
to θ) along the homotopy path is of order ε.

Proof.
(i) Note that hkδ

u
k = (p̂k− p̂k+1)fu(ûk, ŷk). By the optimality condition (3.2), we

have that

(4.5)
0 = Hu[pk+1](uk, yk)−Hu[pk](uk−1, yk−1) + θ∆u

k

= pk+1fu(uk, yk)− pkfu(uk−1, yk−1) + θ∆u
k

= (pk+1 − pk)fu(uk, yk) + pk [fu(uk, yk)− fu(uk−1, yk−1)] + θ∆u
k

= (pk+1 − pk)fu(uk, yk) + pk [fu(uk, yk)− fu(uk−1, yk)] + hkC
1
k + θ∆u

k .

By the mean-value theorem, we have that

pk(fu(uk, yk)− fu(uk−1, yk)) = Hk(uk − uk−1),

where

(4.6) Hk := pk

∫ 1

0

fuu(uk−1 + σ(uk−1 − uk), yk)dσ,

so that (4.4) holds. We conclude by combining (4.5) and the discrete costate equation

in (3.2), where ∇ug(1)i (uk, yk) = g′i(yk)fu(uk, yk).
(ii) It is easily checked that C1

k and C2
k have variations of order ε, as well as (since

it is of the order of h̄) θhkδ
p
kfu(uk, yk). Since the time step is constant, we have that,

by (4.1), ∆u
k/hk = δuk − δuk−1 is of the order of h̄ over the interior of a boundary arc.

The conclusion follows.

Let us define

∆k,i
g :=

gi(yk+1)− gi(yk)

hk
− gi(yk)− gi(yk−1)

hk−1
,

Ξθk := g′i(yk) (f(uk−1, yk)− f(uk−1, yk−1))

+ θg′i(yk)(hkδ
y
k − hk−1δ

y
k−1) + 1

2hkg
′′
i (yk)f(uk, yk)2

+ 1
2hk−1g

′′
i (yk)f(uk−1, yk−1)2.

(4.7)

Lemma 4.2. We have that
(a) the following relation holds

(4.8) ∆k,i
g = g′i(yk)fu(yk, uk)(uk − uk−1) + Ξθk +O(h̄2) +O(ε|uk − uk−1|);

(b) if in addition the time step is constant, then

(4.9) ‖Ξθ − Ξ1‖∞ = O(h̄ε).
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Proof. Use

gi(yk+1)− gi(yk) = g′i(yk)(yk+1 − yk) + 1
2g
′′
i (yk)(yk+1 − yk)2 +O(h3k)

= hkg
′
i(yk)f(uk, yk)

+ 1
2h

2
k

(
2θg′(yk)δyk + g′′i (yk)f(uk, yk)2

)
+O(h3k)

gi(yk−1)− gi(yk) = g′i(yk)(yk−1 − yk) + 1
2g
′′
i (yk)(yk−1 − yk)2 +O(h3k)

= − hk−1g
′
i(yk)f(uk−1, yk−1)

+ 1
2h

2
k−1

(
−2θg′i(yk)δyk−1 + g′′i (yk)f(uk−1, yk−1)2

)
+ O(h3k−1).

We obtain (a) by dividing these relations by hk and hk−1, respectively, adding
them, and observing that

f(uk, yk)− f(uk−1, yk−1) = f(uk, yk)− f(uk−1, yk) + f(uk−1, yk)− f(uk−1, yk−1)

= fu(uk, yk)(uk − uk−1) + (f(uk−1, yk)− f(uk−1, yk−1)) +O(ε|uk − uk−1|).

Since |yk − yk−1| = O(hk−1), the point (b) follows using that hk = hk−1 and
|δyk − δ

y
k−1| = O(h̄).

Now we are ready to obtain the uniform Lipschitz estimates of the variables of
the perturbed problem. A similar result, for the case of a linear quadratic optimal
control problem, was obtained in [15]. Let us set

(4.10) wk = νk∇ug(1)(uk, yk) =

r∑
i=1

νk,i∇ug(1)i (uk, yk).

We denote by Lip(uθ), Lip(pθ) the Lipschitz constants of uθ, pθ, defined as follows
for the control:

Lip(uθ) := max{|uθk+1 − uθk|/hk; 0 ≤ k < N},

and similarly for the costate.

Lemma 4.3. We have that

(4.11) wTkH−1k wk =
1

hk
wk · (uk − uk−1) + wTkH−1k C3

k ,

as well as Lip(uθ) + Lip(pθ) + ‖νθ‖∞ = O(1).

Proof. By the Legendre–Clebsch condition (A3), for small enough ε > 0, Hk is
uniformly invertible. Computing the scalar product of both sides of (4.3) by wTkH

−1
k ,

we obtain (4.11), and deduce with (A2) that, for some c1 > 0, c2 > 0, provided h̄ is
small enough,

(4.12) c1|νk|2 ≤ wTkH−1k wk ≤
1

hk
wk · (uk − uk−1) + c2|νk|.

By (4.8),

(4.13) wk · (uk−uk−1) =

r∑
i=1

νkg
′
i(yk)fu(yk, uk)(uk−uk−1) =

r∑
i=1

νk∆k,i
g +O(h̄|νk|),
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so that with the previous display

(4.14) c1|νk|2 ≤
1

h̄

r∑
i=1

νk∆k,i
g +O(|νk|).

When νk,i 6= 0, we have that gθk,i := gi(yk) − θh2kδ
g
k,i reaches a local maximum and

therefore

0 ≥
gθk+1,i − gθk,i

hk
−
gθk,i − gθk−1,i

hk−1
,

which amounts to

(4.15) ∆k,i
g ≤ θ

(
h2k+1δ

g
k+1,i − h2kδ

g
k,i

hk
−
h2kδ

g
k,i − h2k−1δ

g
k−1,i

hk−1

)
≤ O(h̄).

Combining with (4.14) it follows that ‖νk‖∞ = O(1). Since |C3
k | = O(1), as already

noticed, the Lipschitz estimate for the control follows from (4.3) that |uk−uk−1|/hk =
O(|νk|+ 1). By (3.2), the discretized costate is also Lipschitz continuous with respect
to θ.

5. Sensitivity analysis.

5.1. Characterization of derivatives with respect to θ. In this section
we complete the proof of Theorem 2.5, showing that an ε-n solution (uθ, yθ) of the
perturbed problem (Pθ) is in an L∞ neighborhood of (ū, ȳ), the local solution of the
problem (P). The strategy consists in establishing that the path Xθ := (uθ, yθ, pθ, ηθ)
is Lipschitz continuous, and then showing that it has the derivative, (from the left
with respect to θ), δXθ := (vθ, zθ, qθ, δηθ), satisfying ‖δXθ‖∞ = O(h̄). This will
imply that the Lipschitz constant of Xθ (in the L∞ norm) is of order O(h̄). We recall
(compare to (3.6)) that νθk := ηθk+1−ηθk, k = 0 to N . Consider the following quadratic
programming problem:

(QP )


min
v

1
2Ωθ(v, z)− θ

N−1∑
k=0

h2k(δpkzk + δukvk) subject to z = zθ[v] and

g′i(yk)zk = −θh2kδ
g
k,i, k ∈ Ii,θ+ ,

g′i(yk)zk ≤ −θh2kδ
g
k,i, k ∈ Ii,θ0 .

(5.1)

Here v ∈ VN , zθ[v] ∈ ZN is defined as the unique solution of the state equation of
the linearized problem

(5.2) zθk+1 = zθk + hkfy(uk, yk)(vk, z
θ
k)− θh2kδ

y
k , k = 0, . . . , N − 1, i = 1, . . . , r,

and the set of constraints Ii,θ+ and Ii,θ0 are defined as the inequality constraints of
problem (Pθ) that are active at yθ, i.e.,

(5.3)

 Ii,θ+ :=
{
k = 0, . . . , N ; νθk,i > 0

}
,

Ii,θ0 :=
{
k = 0, . . . , N ; νθk,i = gi(y

θ
k) = 0

}
.

Finally, the Hessian of the Lagrangian of the discretized problem is, setting Hθ
k :=

pθk+1f(uθk, y
θ
k) and for zθ = zθ[v],

(5.4) Ωθ(v, z) :=

N−1∑
k=0

hkD
2Hθ

k(vk, zk)2 +

N∑
k=0

hkν
θ
kD

2gθk(zk)2 + φ′′(yθN )(zN )2.



458 J. FRÉDÉRIC BONNANS AND ADRIANO FESTA

Proposition 5.1. Let either (A4) or (A5) hold. Then problem (QP ) has a
unique solution δXθ := (vθ, zθ, qθ, δηθ), which is equal to the left derivative of θ 7→ Xθ.

Proof. We apply Jittorntrum’s result [23, Thm. 4]. It states that, for a nonlinear
programming problem, the directional derivative (in our case simply the left deriva-
tive) of the solution is obtained by solving a quadratic problem whose cost function
is the Hessian of the Lagrangian (with respect to both the optimization parameters
and the perturbation in the desired direction) under the constraint of linearization
of all active constraints. We recall that in this case the inequality constraints asso-
ciated with a nonzero multiplier are changed into equalities. This theorem has two
hypotheses: (i) the surjectivity of the derivative of active constraints for the nonlin-
ear programming problem (which gives the existence and uniqueness of a Lagrange
multiplier), and (ii) the positivity of the Hessian of the Lagrangian (with respect to
both the optimization parameters) over the extended critical cone. The latter is the
set of directions in the kernel of the linearization of the constraints associated with
a positive Lagrange multiplier. Since the quadratic problem corresponds to (QP ) in
our setting, we just have to check both hypotheses.

We prove (i) in Proposition 5.2, and (ii) when (A5) holds in Lemma D.2. Finally,
assume that (A4) holds. Then (ii) follows from Lemma C.1 in the Appendix C.

Let us introduce the following discrete alternative formulation: we underline the
analogy with the alternative formulation recalled in section 2.3. We first define the
set of inequality constraints that are active at the solution of (QP ):

(5.5) Ii,θ := Ii,θ+ ∪ {k ∈ I
i,θ
0 ; g′i(y

θ
k)zθk = 0}.

For i = 1, . . . , r, denote by k[i, 1] < · · · < k[i,Mθ
i ] the elements of Ii,θ, set k[i, 0] = 0,

and for j = 0, . . . ,Mθ
i − 1,

(5.6)

{
∆ti,j := tk[i,j+1] − tk[i,j],
bEi,j := −θ(h2k[i,j+1]δ

g
k[i,j+1] − h

2
k[i,j]δ

g
k[i,j])/∆ti,j .

Set

(5.7) Gk(vk, zk) :=
g′(yk+1)− g′(yk)

hk
zk + g′(yk+1) (f ′(uk, yk)(vk, zk)− θhkδyk) .

If z = zθ[v], then

(5.8) Gk(vk, zk) =
g′(yk+1)zk+1 − g′(yk)zk

hk
.

Since z0 = 0, it follows that

(5.9) g′(yθk)zk =

k−1∑
q=0

hqGq(vq, zq).

So the solution of (QP ) satisfies the following equality constraints, denoting by Gk,i
the ith component of Gk:

(5.10)

k[i,j]−1∑
q=0

hqGi,q(vq, zq) = −θh2kδ
g
k[i,j],i, i = 1, . . . , r, j = 1, . . . ,Mθ

i − 1.
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An equivalent set of equality constraints is

(5.11) bEi,j −
1

∆ti,j

k[i,j+1]−1∑
k=k[i,j]

hkGk,i(vk, zk) = 0, i = 1, . . . , r, j = 0, . . . ,Mθ
i − 1.

The corresponding quadratic problem is

(5.12) (QPE)


min
v

1
2Ωθ(v, z)− θ

N−1∑
k=0

h2k(δpkzk + δukvk)

subject to z = zθ[v] and (5.11).

We call vθ the solution of this problem and δη̄θ the multiplier associated with con-
straints (5.11) and q̂ the costate. The Lagrangian of (QPE) is by the definition

Ωθ(v, z)− θ
N−1∑
k=0

h2k (δpkzk + δukvk) +

N−1∑
k=0

q̂k+1

(
hkf

′
k(vk, zk) + zk − zk+1 − θh2kδ

y
k

)(5.13)

+
∑
i,j

∆ti,jδη̄
θ
i,j

bEi,j − k[i,j+1]−1∑
k=k[i,j]

hkGk(vk, zk)/∆ti,j

 .

The optimality conditions of (QPE) have the following form. The costate equation is

q̂k = q̂k+1 + hkq̂k+1f
k
y + hk(vk)THk

uy + hk(zk)THk
yy + hkνk(zk)T g′′(yk)

−
r∑
i=1

δη̄i,j[i,k] (g′(yk+1)− g′(yk) + hkg
′(yk+1)fy(uk, yk))− θh2kδ

p
k;

q̂N = (zN )Tφ′′(yN ) + hNνN (zN )T g′′(yN ).

(5.14)

Given k ≤Mi, set

(5.15) j[i, k] := min{j ∈ Ii,θ; j ≥ k + 1}.
Expressing the stationarity of the Lagrangian with respect to v, we get that

(5.16) (vk)THk
uu + (zk)THk

uy +

(
q̂k+1 −

r∑
i=1

δη̄i,j[i,k]g
′(yk+1)

)
fku = 0.

This suggests defining

q̃k+1 := q̂k+1 −
r∑
i=1

δη̄i,j[i,k]g
′
i(yk+1), k = 0, . . . , N − 1,

δν̄k := δη̄i,j[i,k] − δη̄i,j[i,k−1], k = 0, . . . , N.

(5.17)

Then q̃ is a solution of

q̃k = q̃k+1 + hkq̃k+1f
k
y + hk(vk)THk

uy + hk(zk)THk
yy + hk(zk)T g′′(yk)

+ hkδν̄kg
′(yk)− θh2kδ

p
k,

q̃N = (zN )Tφ′′(yN ) + hNνN (zN )T g′′(yN ) + hNδν̄Ng
′(yN ).

(5.18)

In addition, we observe that if δν̄k 6= 0, then δη̄i,j[i,k] > δη̄i,j[i,k−1] by (5.17), and
therefore the ith state constraint is active at step k. Since (QP ) has a unique multi-
plier, we deduce that q̃ is equal to the solution q of (3.5), and

(5.19) δν̄k = δνk; δη̄i,j[i,k] = δηi,k+1.
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5.2. Uniform surjectivity. We write here the linear mappings involved in the
quadratic problem (QPE), starting with

(5.20) zLk+1 = zLk + hkfy(uk, yk)(vk, z
L
k ), k = 0, . . . , N − 1; zL0 = 0.

For any v in the space VN , (5.20) has a unique solution denoted by zL[v]. Let ξk be
the solution of ξ0 = 0 and

(5.21) ξk+1 = ξk + hkf
k
y ξk − θh2kδky ; k = 0, . . . , N − 1; ξ0 = 0.

We have that

(5.22) zk = zLk + ξk; k = 0, . . . , N, ‖ξ‖∞ = O(h̄).

We set

GLi,j(v) := (g′i(yk[i,j+1])z
L
k[i,j+1][v]− g′i(yk[i,j])zLk[i,j][v])/∆ti,j ,

j = 0, . . . ,Mθ
i − 1; i = 1, . . . , r.

(5.23)

The linear (homogeneous) equations corresponding to those of (QPE) are therefore
GL(v) = 0. Consider the following perturbation of the right-hand side of these equa-
tions, where b̄ is an arbitrary term:

(5.24) GL(v) = b̄.

We use the following norm for s ∈ [1,∞):

(5.25) ‖b̄‖ss :=

r∑
i=1

Mθ
i −1∑
j=0

∆ti,j |b̄i,j |s.

These norms can be identified with the usual Ls norms on [0, T ] for piecewise constant
functions and therefore we have the usual Cauchy–Schwarz and Hölder inequalities,
in particular

(5.26) ‖b̄‖1 ≤
√
rT‖b̄‖∞

Proposition 5.2. There exist constants Cs, s ∈ [1,∞], such that the linear equa-
tion GL(v) = b̄ has, for small enough h̄, a solution v verifying

(5.27) ‖v‖s ≤ Cs‖b̄‖s for each s ∈ [1,∞].

Before proving Proposition 5.2, we introduce some notations. For t ∈ [0, T ] and
ε0 > 0, we define the set of ε0 active constraints as

(5.28) Aε0(t) := {1 ≤ i ≤ r; |t′ − t| ≤ ε0 for some t′ such that i ∈ A(t′)}.

Since the control is continuous by (A1), and the first-order state constraint satisfies
(A2), we have that, for ε0 > 0 small enough,

∣∣∣∣∣∣
∑

i∈Aε(t)

λi∇ug(1)i (ū, ȳ)

∣∣∣∣∣∣ ≥ 1
2α|λ|, if λi = 0 when i 6∈ Aε0(t), for all t ∈ [0, T ].

(5.29)
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For i ∈ {1, . . . , r}, we denote the set of ε0 active constraints by J i,θε0 , i = 1, . . . , r. This
is a union of closed balls (in [0, T ]) of radius ε0. Since every connected component
has length at least 2ε0, J i,θε0 is a finite union of closed intervals.

We next define the one-time-step analogue of GL:

(5.30) GLk,i(vk, zk) :=
g′i(yk+1)− g′i(yk)

hk
zk[v] + g′i(yk+1)(f ′(uk, yk)(vk, zk[v])).

Note that GLk,i(vk, zk) = (g′i(yk+1)zk+1[v]− g′i(yk)zk[v])/hk.

Proof of Proposition 5.2. The idea is to compute, for each k, vk as the minimum
norm solution of the linear equations

(5.31) GLk,i(vk, z
L
k ) = b̃k,i, i ∈ Aε(tk),

where the variable size vector b̃k,i for i in Aε(tk) will be defined later, and then to set

(5.32) b̃k,i := GLk,i(vk, z
K
k ) for i 6∈ Aε(tk).

Thanks to the expression of GLk,i and (5.29) setting zL = zL[v], we have that

(5.33) |vk| ≤ c1

|zLk |+ ∑
i∈Aε(tk)

|b̃k,i|

 .

Here the ci are positive constants not depending on v or k. It follows with (5.30) that

(5.34) |b̃k| ≤ c2
(
|vk|+ |zLk [v]|

)
≤ c3

|zLk |+ ∑
i∈Aε(tk)

|b̃k,i|

 .

So, by (5.20)

(5.35) |zLk+1| ≤ (1 + c4hk)|zLk |+ c5hk|vk| ≤ (1 + c6hk)|zLk |+ c7hk
∑

i∈Aε(tk)

|b̃k,i|.

By the discrete Gronwall’s lemma it follows that

(5.36) ‖zL‖∞ ≤ c8
N−1∑
k=0

hk
∑

i∈Aε(tk)

|b̃k,i|,

and therefore, with (5.33),

(5.37) ‖v‖ss ≤ c9
N−1∑
k=0

hk
∑

i∈Aε(tk)

|b̃k,i|s,

and in the right-hand side we recognize the Ls norm of the ε0 active components of b̃.
We next end the proof by fixing the b̃k in such a way that

(5.38) GLi,j(v) = b̄i,j ; j = 0, . . . ,Mθ
i − 1; ‖b̃‖s = O(‖b̄‖s).

We obtain the second relation by induction over k: we prove that there exists c > 0
such that

(5.39)
∑
`≤k

|b̃`|s ≤ c
∑

i;k[i,j]≤k

|b̄k,i|s.
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We distinguish two cases.
(a) If {tk[i,j], . . . , tk[i,j+1]} ∈ J i,θε0 , then take

(5.40) b̃k,i = b̄k[i,j+1], k = k[i, j] + 1, . . . , k[i, j + 1].

(b) If {tk[i,j], tk[i,j+1]} 6∈ J i,θε0 , let k′ be the smallest index in k[i, j], . . . , k[i, j + 1]

such that k ∈ J i,θε0 whenever k′ ≤ k ≤ k[i, j + 1]; then

(5.41) tk′ + 1
2ε0 ≤ tk[i,j+1].

We choose

(5.42) b̃k,i =

{
b̄i,j , k = k[i, j] + 1, . . . , k′,
γ, k = k′ + 1, . . . , k[i, j + 1]

for some γ such that

(5.43)

k′∑
k=k[i,j]+1

hk b̃k,i + γ(tk[i,j+1] − tk′) = (tk[i,j+1] − tk[i,j])b̄k[i,j+1],

so that the first relation in (5.38) holds. At the same time, since 1
2ε0 ≤ tk[i,j+1] − tk′ ,

we have that

(5.44)

γ ≤ 2

ε0

∣∣∣∣∣∣(tk[i,j+1] − tk[i,j])b̄k[i,j+1] −
k′∑

k=k[i,j]+1

hk b̃k,i

∣∣∣∣∣∣
≤ 2

ε0

T |b̄k[i,j+1]|+
∑
k≤k′

hk|b̃k,i|

 .

We use the induction hypothesis (5.39) in order to estimate
∑
k≤k′ hk|b̃k,i|. The

conclusion follows.

From the same argument of the previous result we can deduce also an estimate
for the control of a feasible trajectory.

Note that

(5.45) Gk,i(vk, zk) = GLk,i(vk) +O(h̄), i = 1, . . . , r.

Corollary 5.3. Problem (QPE) has a feasible point ṽ such that ‖ṽ‖∞ = O(h̄).

Proof. In view of the proposition above, it is enough to check that we can write
the active constraints of (QPE) in the form

(5.46) GLk,i(v) = b̄k,i; ‖b̄‖∞ = O(h̄).
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Remember that z[v] = zL[v] + ξk[v] with ‖ξ[v]‖∞ = O(‖v‖1); therefore

b̄i,j = −θ
(
g′i(yk[i,j+1])− g′i(yk[i,j])

∆ti,j
+ g′i(yk[i,j+1])f

′
y(uk[i,j], yk[i,j])

)
ξk[i,j]

− θ(h2k+1δ
g
k+1 − h

2
kδ
g
k)/hk,

(5.47)

which is of the desired form.

Corollary 5.4. Let either (A4) or (A5) hold. Then (QPE) has a unique solu-
tion vθ associated with a unique alternative multiplier δη̄θ, which satisfy

(5.48) ‖vθ‖2 + ‖δη̄θ‖2 = O(h̄2).

Proof. The existence and uniqueness properties were obtained in Proposition 5.1,
and (5.48) follows from Lemma B.1, whose hypotheses hold in view of Proposition 5.2
and Lemma C.1.

5.3. Estimate of the derivatives with respect to θ. We arrive, finally, at
the main result of the section. We recall that δXθ := (vθ, zθ, qθ, δηθ) is the derivative
(from the left with respect to θ) of Xθ := (uθ, yθ, pθ, ηθ).

Proposition 5.5. Let either (A4) or (A5) hold. Then, for fixed C > 0,

‖vθ‖∞ + ‖zθ‖∞ + ‖qθ‖∞ + ‖δηθ‖∞ ≤ Ch̄.

Proof. Applying Lemma B.1 to (QPE), where X and Y have norms defined by
(5.27) (where s = 2) and (5.25), and keeping in mind that, by the definition of the
Lagrangian, we have identified the image space (of bE) with its dual, we get that

(5.49) ‖vθ‖2 +
∑
i,j

∆ti,j |δη̄θi,j |2 ≤ c1h̄.

Fix εη > 0, not depending on h̄. Then

(5.50) If ∆ti,j > εη, then |δη̄θi,j | ≤ c1ε−1/2η h̄.

So, as far as δη̄θ is concerned, it remains to obtain a uniform estimate when ∆ti,j ≤ εη.
It easily follows from (5.49), the state equation (5.2), and the costate equations (5.14)
that

(5.51) ‖zθ‖∞ + ‖qθ‖∞ ≤ c2h̄.

By (5.6), |b̄i,j | = O(h̄). Evaluating the contribution of the term containing zk and

observing
∑k[i,j+1]
k=k[i,j]+1 hk = ∆ti,j , we have

(5.52)
1

∆ti,j

ki+1∑
k=ki+1

hk∇uĝ(1)k,i vk = O(h̄).

Eliminating vk in (5.16), we get

(5.53)
1

∆ti,j

k[i,j+1]∑
k=k[i,j]+1

hk∇uĝ(1)k,i (H
k
uu)−1

r∑
i′=1

(∇uĝ(1)i′,k)T δη̄θi′,j[i′,k] = O(h̄).
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Multiplying by δη̄θi,j[i,k] on the left, summing over i and j ∈ Ii′,k, and setting

(5.54) wk :=

r∑
i=1

(∇uĝ(1)k,i )
T δη̄θi,j[i,k],

we get

(5.55)
1

∆ti,j

r∑
i=1

k[i,j+1]∑
k=k[i,j]+1

hkw
T
k (Hk

uu)−1wk = O(h̄)|δη̄θ|.

Denote by η̂ the vector of components δη̄θi,j[i,k] for i = 1 to r. For small enough ε

depending on η̂, by (A2)–(A3), we have that

(5.56) |η̂|2 ≤ α2
g|wk|2 ≤ α−1α2

gw
T
k (Hk

uu)−1wk,

and therefore, since ∆ti,j =
∑k[i,j+1]
k=k[i,j]+1 hk,

(5.57) |η̂|2 ≤
α−1α2

g

∆ti,j

k[i,j+1]∑
k=k[i,j]+1

wTk (Hk
uu)−1wk = O(h̄)|η̂|.

Therefore, we get with (5.19) that

(5.58) |δη̄θi,j[i,k]| ≤ O(h̄).

The corresponding estimates for vk and δηθ follow from (5.16) and (5.19).

6. Example. We present an academic example which is a variant of the appli-
cation discussed in [20]. Let us consider the following optimal control problem, for
some ε̄ > 0, where g := 9.8:

min
∫ 1

0

(
1
2u

2(t) + gy(t)
)
dt+ (y(1)− c)2/ε̄,

subject to ẏ(t) = u(t), y(0) = c, y(t) ≥ 0.

The solution of this problem can be seen as the minimum energy state of a system
composed by an elastic line of uniformly distributed mass in a constant gravity field
with the presence of a lower constraint. We can add a state variable, say ỹ, with
zero initial condition and derivative equal to the integrand of the integral cost, and
reformulate the cost as ỹ(1) + (y(1) − c)2/ε̄, in order to comply with the format of
the theoretical results. We obtain the problem (for a fixed parameter ε̄ > 0)

minφ(y(1), ỹ(1)) := ỹ(1) + (y(1)− c)2/ε̄

subject to

{
ẏ(t) = u(t),
˙̃y(t) = 1

2u
2(t) + gy(t),

{
y(0) = c,
ỹ(0) = 0,

y(t) ≥ 0.

It is known that the costate associated with ỹ has value 1 (observe that this problem
is qualified) and that the costate associated with y and the measure associated with
the state constraints are invariant under this reformulation.

The exact solution for this problem is (assuming ε̄ < 2c/g)

u(t) =

 g(t− ten), t ∈ [0, ten),
0, t ∈ [ten, tex),
g(t− tex), t ∈ [tex, 1],
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Fig. 1. Control and state with various choices of h. We can experimentally observe the con-
vergence of the numerical approximation, the regularity in the junction points, and the stability of
the boundary arcs.

Table 1
Experimental error at various discretization steps.

h ‖yh − ȳ‖∞ Ord(L∞) ‖uh − ū‖∞ Ord(L∞)

0.2 0.0513 0.9996
0.1 0.0139 1.87 0.4996 1
0.05 0.0044 1.65 0.2546 0.97
0.025 0.0020 1.18 0.1311 0.96
0.0125 0.0012 1 0.0668 0.97
0.0063 0.0006 1 0.0334 1
0.0032 0.0003 1 0.0172 0.96

where ten =
√

2c/g and tex = 1−
√

2c/g − ε̄. The optimal trajectory is

y(t) =

 g(t2/2− tent) + c, t ∈ [0, ten),
0, t ∈ [ten, tex),
g(t− tex)2/2, t ∈ [tex, 1],

which means that y(1) = c − gε̄/2. If ε̄ ≥ 2c/g, then the solution is as above for
t ∈ [0, ten) and simply equal to zero otherwise.

We solved the discrete solution using an SQP (sequential quadratic programming)
algorithm, a popular iterative method for nonlinear optimization [2, sect. 15]; in
Figure 1 and Table 1 are shown the results at various constant discrete steps h for
c = 0.8 and ε̄ = 0.01. This test confirms the convergence results stated previously.
The small discrepancy on the order of convergence of the control u comes from some
numerical error introduced in the optimization of the discrete system.

Appendix A. About strict critical cones. The strict critical cone C(ū) defi-
ned in (2.11)–(2.13) can be compared to the (standard) critical cone Ĉ(ū) defined as
the set of v ∈ V such that z := z[v] ∈ Z satisfies

g′i(ȳ(t))z(t) ≤ 0, t ∈ Ii,(A.1)

φ′(ȳ(T ))z(T ) ≤ 0.(A.2)
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Lemma A.1. We have that C(ū) ⊂ Ĉ(ū). If (ū, ȳ) is a stationary point with
associated multiplier (p, η) such that the support of ηi is equal to the contact set Ii,
for i = 1 to r, then C(ū) = Ĉ(ū).

Proof. That C(ū) ⊂ Ĉ(ū) follows from the definition of these sets. Let (p, η) be
as in the lemma. For the sake of simplicity of notations we prove the second statement
for the case of a scalar state constraint. The Lagrangian function for the continuous
problem is

(A.3) L(u, y, p, η) := φ(y(T )) +

∫ T

0

p(t) · (f(u(t), y(t))− ẏ(t))dt+

∫ T

0

g(y(t))dη(t).

Let v be a critical direction and set z := z[v]. Then, by the definition of a critical
direction,

(A.4) DL(u, y, p, η)(v, z) = φ′(y(T ))z(T ) +

∫ T

0

g′(y(t))z(t)dη(t).

On the other hand, we can observe that the stationarity conditions imply the terms
DuL(u, y, p, η) = 0 and DyL(u, y, p, η) = 0, then

(A.5) φ′(y(T ))z(T ) +

∫ T

0

g′(y(t))z(t)dη(t) = 0.

Since φ′(y(T ))z(T ) ≤ 0 and g′(y(t))z(t)dη(t) ≤ 0 a.e., this implies φ′(y(T ))z(T ) = 0
and g′(y(t))z(t)dη(t) = 0 a.e. The conclusion follows.

Appendix B. Coercive quadratic programs. We recall a classical conseque-
nce of the coercivity of the cost function of an equality constrained quadratic problem
over its feasible set. To keep the notation as simple as possible, we formulate the
problem in an abstract way. The result will be stated with the same notation as in
Corollary 5.4. Given two Hilbert spaces X and Y , identified with their dual, consider
the optimization problem

(B.1) min
x∈X

(c, x)X +
1

2
(Hx, x)X subject to Ax = b in T ,

where (·, ·)X denotes the scalar product in X (and ‖ · ‖ := (·, ·)X) with a similar
convention for Y , H : X → X is symmetric, A ∈ L(X,Y ), c ∈ X, and b ∈ Y . The
Lagrangian of the problem is

(B.2) (c, x)X +
1

2
(Hx, x)X + (λ,Ax− b)Y .

The associated optimality conditions are

(B.3) c+Hx+ATλ = 0; Ax = b.

The next lemma is classical (see [9, Thm. 1. and Prop. 1.1]) but it is worth
giving a short proof of it.

Lemma B.1. Let α > 0 and cA > 0 be such that
(i) (Coercivity) α‖x‖2 ≤ (Hx, x)X for all x ∈ KerA;

(ii) (Strong surjectivity) for any b′ ∈ Y , there exists x′ ∈ X such that Ax = b′

and ‖x′‖ ≤ cA‖b′‖.
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Then there exists κ > 0, a function of α and cA, such that (B.1) has a unique solution
x̄ and an associated Lagrange multiplier λ such that

(B.4) ‖x̄‖+ ‖λ‖ ≤ κ(‖b‖+ ‖c‖).

Proof. The fact that (B.1) has a unique solution x̄ is consequence of the coercivity
(which in the case of a quadratic cost implies strong convexity over the feasible set
since the latter is a vector subspace). The uniqueness of the Lagrange multiplier λ is
a consequence of the surjectivity of A, implied by the strong surjectivity.

The latter also implies the existence of x0 such that Ax0 = b and ‖x0|| ≤ cA‖b‖.
Then δx := x̄− x0 is a solution of

(B.5) Hδx+ATλ = −c−Hx0; Aδx = 0.

Therefore, since δx ∈ KerA,

α‖δx‖2 ≤ δxTHδx = −(δx, c+Hx0)X + (Aδx, λ)

so that ‖δx‖ ≤ (‖c‖+ ‖Hx0‖)/α. Since ‖x0‖ ≤ cA‖b‖, we deduce that

(B.6) ‖x̄‖ ≤ ‖δx‖+ ‖x0‖ ≤ cA‖b‖+
1

α
(‖c‖+ ‖H‖ cA‖b‖) .

By the surjectivity hypothesis,

(B.7) ‖λ‖ ≤ 1

cA
‖ATλ‖ ≤ 1

cA
(‖c‖+ ‖H‖‖x‖).

The conclusion follows.

Appendix C. Stability of the Hessian of the Lagrangian. Given v ∈ VN ,
we denote by v̄ the associated corresponding piecewise constant element defined by

(C.1) v̄(t) = vk, t ∈ (tk, tk+1) for all k = 0 to N − 1.

Note that v and v̄ have the same Ls norm, s ∈ [1,∞]. Setting z̄ := z[v̄] (the solution
of the state equation (2.7) for the linearized, continuous in time problem), we easily
check that

(C.2) ‖zθ − z̄‖∞ = ‖v‖∞O(ε+ h̄).

We apply the previous result to (QPE) using the following lemma.

Lemma C.1. We have that, for any v in UN ,∣∣Ωθ(v, zL[v])− Ω(v̄)
∣∣ = O(ε‖v̄‖)2.

Proof. Since, by the definition (see (2.20)), hθkν
θ
k = η̄θk − η̄θk+1, it follows that

∆ :=

N∑
k=0

hkν
θ
kD

2gθk(zk)2 =

N∑
k=0

(η̄θk − η̄θk+1)D2gθk(zk)2

=

N∑
k=1

η̄θk(D2gθk(zk)2 −D2gθk−1(zk−1)2) = ∆1 + ∆2,
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where, by a Taylor expansion of D2gθ, we define, for some ŷk ∈ [yk−1, yk],

∆1 :=

N∑
k=1

η̄k(D2gθk(zk)2 −D2gθk−1(zk)2) =

N∑
k=1

hkη̄kD
3gθ(ŷk)(fθk−1, zk, zk),

∆2 :=

N∑
k=1

η̄θk(D2gθk−1(zk)2)−D2gθk−1(zk−1)2)

=

N∑
k=1

hk−1η
θ
kD

2gθk−1(zk + zk−1, Df
θ
k−1(vk−1, zk−1)),

where we used the identity A(b, b)−A(a, a) = A(a+b, a−b) for any symmetric bilinear
form A and the linearized state equation. We deduce that, for h̄ small enough,

∆1 =

∫ T

0

g(3)(ȳ(t))(f [t], z̄(t), z̄(t))η̄(t)dt+O(ε‖v̄‖)

and

∆2 = 2

∫ T

0

g′′(ȳ(t))(z̄(t), fy[t](z̄(t), v̄(t))η̄(t)dt+O(ε‖v̄‖).

Using the identity (2.17), we can claim that
∣∣∣Ωθ(v, z)− Ω̃(v̄)

∣∣∣ = O(ε‖v̄‖)2. We con-

clude with Lemma 2.4.

Appendix D. Analysis of assumption (A5). As shown before, a key point
of the theory is the coercivity of the Hessian of the Lagrangian of (QP ) over the
kernel of equality constraints. Under the assumptions (A5), we can obtain it directly
by showing the stability of the boundary arcs.

A main point is contained in the following lemma.

Lemma D.1. Let (A5) hold. Given a boundary arc (ta, tb), let ka and kb be defined
as

ka (resp., kb): first index (resp., last index) for which tk > ta (resp., tk < tb).
(D.1)

Let ε′ > 0. Reducing ε > 0 small enough, we have that when h̄ is small enough, the
following holds.

νθk > 0 for all 0 ≤ k ≤ N such that tka + ε′ < tk < tkb − ε′.

Proof. The argument has two steps.
(a) By the definition ‖ηθ − η̄‖∞ < ε, and by (A5), η̄ has a uniformly positive

derivative over (tka + ε′ < tk < tkb − ε′) minorized by c1 > 0. We have that,
for ka < k < kb,

(D.2) ηθk ≥ η̄(tk)− ε ≥ η̄(tka) + c1(tk − tka)− ε ≥ ηθka + c1(tk − tka)− 2ε,

that is,

(D.3) c1(tk − tka)− 2ε ≤ ηθk − ηθka .

Therefore, if tk−tka > 2ε/c1, then the above right-hand side must be positive,
proving that the constraint is active for some k such that tk ≤ tka + 2ε/c1.
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(b) If the conclusion does not hold, by step (a), g(yθk) would have a local minimum
(possibly with zero value) for some ka < k < kb, such that νθk = 0. Then ∆k

g

defined in (4.7) is nonnegative. Multiplying (4.3) by ∇ug(1)(uk, yk)T (Hθk)−1

on the left and using Lemma 4.1(ii) and (4.9), we get

(D.4) −
∆k
g

hk
+ νk(∇ug(1)(uk, yk))TH−1k ∇ug

(1)(uk, yk) = Ξ̂θk,

where Ξ̂θk is such that ‖Ξ̂θ− Ξ̂1‖∞ = O(ε). We have that the left-hand side of
(D.4) is greater than a positive constant independent on h̄, since, for θ = 1,

for some K > 0, ∆k
g = 0, νk > K, and |∇g(1)u | > K, i.e., for some C > 0,

(D.5) −
∆k
g

hk
+ νk(∇ug(1)(uk, yk))TH−1k ∇ug

(1)(uk, yk) ≥ C.

This relation is still valid for ε and h̄ small enough, for all θ ∈ [θm, 1], in view
of the continuity of the right-hand side of (D.4). However, it cannot hold
when νk = 0 and ∆k

g ≥ 0, so we get the desired contradiction.

Here we prove the coercivity of Ωθ over the kernel of equality constraints of (QP ).
Note that such a property is naturally preserved passing to the alternative formulation
Ω̃θ as shown, for the continuous case in section 2.

Lemma D.2. Let (A5) hold. Then v 7→ Ωθ(v, ZL[v]) is uniformly (over h̄ small
enough) coercive over the kernel of equality constraints of (QP ).

Proof. We first examine the continuous problem and prove that Ω is, for ε > 0
small enough, coercive for h̄ sufficiently small over the following enlargement of the
critical cone:

(D.6) Cε := {v ∈ V | g′(ȳ(t))z[v](t) = 0 for all t ∈ [ta + ε, tb − ε]}.

This holds because otherwise we would have a sequence εq ↓ 0 and vq in Cεq of the
unit norm such that Ω(vq) ≤ o(1). Extracting a subsequence if necessary, assume
that vq weakly converges to v̄ in V. Thanks to the Legendre condition we have that
Ω is a Legendre form and therefore

(D.7) Ω(v̄) ≤ lim inf
q→0

Ω(vq) ≤ 0.

At the same time, by standard compactness arguments, g′(ȳ)z̄ = 0 when the constraint
is active (where z̄ is the state variable of the linearized problem associated with v̄),
and so v̄ is a critical direction. By (A5), Ω(v̄) ≤ 0 implies that v̄ = 0. But then
Ω(v̄) = limq Ω(vq), so vq (of the unit norm) strongly converges to v̄ = 0, which gives
the desired contradiction.

Now let v belong to the feasible domain of (QP ). By Lemma D.1, we know that
v belongs to the set

(D.8) {v ∈ VN ; |g′(yθk)zk| ≤ ε, 0 ≤ k ≤ N, such that tka + ε < tk < tkb − ε}.

Let v̄ be the associated element of V and z̄ the corresponding state. Given ε > 0, it is
easily checked that v̄ ∈ Cε when h̄ is small enough, and so, by step (a), Ω(v̄) ≥ 1

2α‖v̄‖
2.

We conclude with Lemma C.1.
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