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Outline of the themes of the lectures

1 Bellman’s approach to Optimal Control

2 Hamilton Jacobi Equations: generalities

3 Weak solutions

4 How to build a simple FD scheme

5 the ’Course of dimensionality’

6 Applications
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Optimal control and Partial Differential equations

One starting motivation:
Using the Dynamical Programming Principle we show that the
value function of a OC problem

a(·) ∈ L∞([0,+∞[,A);

{
ẏ(t) = f (yx (t),a(t)),
yx (0) = x .

v(x) = inf
a

∫ τx (a)

0
l(yx (s),a(s))e−λs ds.

where τx (a) is the time of first exit from the set Ω, is the
viscosity solution of the HJ equation{

λv(x) + H(x ,Dv(x)) = 0 x ∈ Ω
v(x) = 0 x ∈ ∂Ω
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Bellman’s Approach to OC

Where the Hamiltonian is defined in the usual way

H(x ,p) := max
a
{−f (x ,a) · p − l(x ,a)},

and τx (a) is the first time of exit from the domain.

Afterwards, with the Pontryagin’s condition, it is possible the
synthesis of a feedback control

a(t) = S(yx0(t)); S(x) ∈ arg mina∈A{f (x ,a) · Dv(x) + l(x ,a)}
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Optimal escape with a bounded speed car

Let us suppose to want to escape from the set Ω = [−1,1], with
a car of speed v ∈ [−1,1].
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Typical issues

Eikonal Equation - minimum time problem

max
a∈B(0,1)

(a · ∇u(x)) = |∇u(x)| = 1, u(−1) = u(1) = 0.

m{
Minimize T (x) :=

∫ τ

0 1dt
ẏ(t) = a(t) a.e. t ∈ [0, τ ]
a(t) ∈ [−1,1], a.e. t ∈ [0, τ ], y(0) = y0 and y(τ) ∈ {−1,1} ,
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A natural question

Is it possible to select, among the a.e. solutions
the ‘interesting’ one?

Answer: Viscosity solutions theory [Crandall, Lions 1983].
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HJ equations

Let Ω be a subset of RN . In general we consider the following
Hamilton-Jacobi equation{

H(x ,u(x),Du(x)) = 0, x ∈ Ω
u(x) = ψ(x), x ∈ ∂Ω

(1)

Hamiltonians with a special interest are:
H(x ,p) := |p| − l(x) (Eikonal equation (distance))
H(x , r ,p) := λr + supa∈A {−f (x ,a) · p − l(x ,a)} (OC
problem)
H(x , r ,p) := λr + supa∈A infb∈B {−f (x ,a,b) · p − l(x ,a,b)}
(Differential Game)
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Viscosity solutions

Definition
A continuous function v : Ω→ R is a viscosity solution of the
equation (1) if the following conditions are satisfied:

for any test function φ ∈ C1(Ω), if x0 ∈ Ω is a local
maximum point for v − φ, then

H(x0, v(x0),∇φ(x0)) ≤ 0 (viscosity subsolution)

for any test function φ ∈ C1(Ω), if x0 ∈ Ω is a local
minimum point for v − φ, then

H(x0, v(x0),∇φ(x0)) ≥ 0 (viscosity supersolution)
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Computing viscosity solutions

Viscosity solutions are typically uniformly continuous and
bounded.
This means that the numerical methods should be able to
reconstruct kinks in the solution (jumps in the derivative).

The goal is to have:
stability
convergence
very small ’numerical viscosity’, to avoid the smearing of
kinks
the schemes should also be able to compute the solution
after the onset of singularities
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Model problem: 1D eikonal equation

Let us consider the following problem in [−1,1]{
|ux | = 1 x ∈ (−1,1)
u(−1) = u(1)

The problem can be reformulate as{
max

a∈{−1,1}
{a ux} = 1 x ∈ (−1,1)

u(−1) = u(1)
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Model problem: 1D eikonal equation

Which is the advantage? To explicit the direction of the
characteristic of the problem.

Indeed when a > 0, ux ≈ D−Ui =
Ui−1−Ui

∆x will have some
chances to be stable.

Instead when a < 0, ux ≈ D+Ui =
Ui+1−Ui

∆x is our candidate

A good idea?

What about ux ≈ D+Ui − D−Ui =
Ui+1−Ui−1

∆x ?
Centered differences can be proven to be always unstable.
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Model problem: 1D eikonal equation

An easy upwind scheme

Called

f−(Ui) = min{−D−Ui ,0}, f +(Ui) = max{D+Ui ,0},

we have that the scheme[
f + − f−

]
(Ui) = 1

is stable and consistent with (1).
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Convergence estimate: 1D eikonal equation

A classic convergence result for monotone schemes (like
upwind) is due to Crandall and Lions (1984)

convergence bounds
They proved for the upwind scheme above an a-priori error
estimate in L∞

sup
i
|u(xi)− Ui | ≤ C(∆x1/2).
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Computational issues
R. Bellman, Dynamical Programming, 1957.
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Some (partial answers) to the computational
issues

Fast marching methods (it plays with the dependency of
the nodes of the grid)

Fast sweeping methods (Gauss Seidel iteration on a
squared grid)

Parallel computing

Domain Decomposition methods (with dependent or
independent domains)
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Applications I - Labyrinths

We consider the labyrinth I(x) as a digital image with I(x) = 0 if x is
on a wall, I(x) = 0.5 if x is on the target, I(x) = 1 otherwise.
We solve the eikonal equation

|Du(x)| = f (x) x ∈ Ω

with the discontinuous running cost

f (x) =

{ 1
4 if I(x) = 1
M if I(x) = 0.
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Applications I - Labyrinths

Figure: Mesh and level sets of the value function for the labyrinth
problem (dx = dt = 0.0078, M = 1010).
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Applications II - Shape-From-Shading

The partial differential equation related to the
Shape-from-Shading model is

R(n(x , y)) = I(x , y)

where I is the brightness function measured at all points (x , y)
in the image, R is the reflectance function. If the surface is
smooth we have

n(x ; y) =
(−vx (x , y),−vy (x , y),1)√

1 + |∇v(x , y)|2
.

If the light source is vertical, i.e. ω = (0,0,1), then equation
simplifies to the eikonal equation

|∇u(x , y)| =

(√
1

I(x , y)2 − 1

)
, (x , y) ∈ Ω.
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Applications II - Shape-From-Shading

Figure: Reconstructed surface from its shading data.
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Applications II - Shape-From-Shading

Figure: Basilica of Saint Paul Outside the Walls: satellite image and
simplified sfs-datum.
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Applications II - Shape-From-Shading

Figure: Choosing boundary conditions.
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Applications II - Shape-From-Shading

Figure: Solutions with various BC.
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Target problems

Setting: a trajectory is driven to arrive in a Target set T ⊂ Ω.
Example: Zermelo Navigation Problem

The target is a ball of radius equal to 0.005 centred in the
origin, the control is in A = B(0,1).

f (x ,a) = a+

(
1− x2

2
0

)
, Ω = [−1,1]2, λ = 1, l(x , y ,a) = 1.
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Application III: Walking on a graph

Problem
Optimization problems on a graph (shortest path, cheaper path
etc. etc.)

Some classical approches
Combinatory (Dijkstra algorithm)
Differential (Eikonal equation with constraints)
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Test 1: structure of the graph
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Test 1: solution and experimental convergence

∆x = h || · ||∞ Ord(L∞) || · ||2 Ord(L2)

0.2 0.1716 0.0820
0.1 0.0716 1.2610 0.0297 1.4652
0.05 0.0284 1.3341 0.0127 1.2256
0.025 0.0126 1.1611 0.0072 0.8188
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Application IV: Differential Game

Let Ω ⊂ Rn, we are considering the system{
y ′(t) = f (y(t),a(t),b(t)), t > 0,
y(0) = x ,

f : Ω× A× B → Rn is enough regular
A, B are compact metric spaces,
b ∈ B := { measurable functions [0,+∞[→ B}
a ∈ A = { measurable functions [0,+∞[→ A}

J(x ,a,b) =

∫ τx

0
dt , τx = time of first arrival in T
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Lower value function

In the following we will refer to the problem
Find

u(x) := inf
φ∈Φ

sup
a∈A

J(x ,a,b)

where Φ : A → B is a non anticipating strategy for the second
player, this is the lower value of the game

Theorem (Evans Souganidis 84)
If R \ T is open and u(.) is continuous, then u(.) is a viscosity
solution of{

H(x ,Du) = min
a∈A

max
b∈B
{−f (x ,a,b) · Du} − 1 = 0 in R \ T

u(x) = 0 in T
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Pursuit-Evasion game w. mult. purs.:

The dynamic is the following

ẏ1 = a1 − b
ẏ2 = a2 − b
...
ẏn = an − b
y(0) = y0

where ai is the velocity of the i − pursuer and b is the velocity
of the evader.
We introduce also the following spaces of controls.

a ∈ A := B(0,1)n

b ∈ B := B(0,1)
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Tag-Chase: example 1

Examples: test with 5 pursuers 1 evader
case1,
case2,
case3.
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Plan of the lecture:

1 Today: A general introduction

2 13.02: Dynamical programming principle and Hamilton
Jacobi equations

3 14.02: Viscosity solutions and well-position

4 19.02: Numerical Methods
5 20.02: Lab Programming a 1D code in Matlab
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Infos

My contact
Adriano FESTA
adriano.festa@univaq.it

Lecture Notes
Available on

http://adrianofesta.altervista.org/insegnamentoeng.html
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Possible applications to handle with these tools

1 Optimal control: Robotic navigation, labyrinths
2 Optimal control: Optimal path on a Network, Traffic
3 Imaging 1: Segmentation
4 Imaging 2: Shape-from-shading
5 Geo/Bio applications: Sand piles geometry
6 Geo/Bio applications: Optimal path through an

inhomogeneous media
7 Finance: Optimal pricing, mean Field Games
8 Programming: Parallel computing using MPI

... and more.
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Questions?
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